
Medical Image Analysis 25 (2015) 56–71

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Splines for diffeomorphisms

Nikhil Singh a,∗, François-Xavier Vialard b, Marc Niethammer a

a The University of North Carolina, Chapel Hill, NC 27514, USA
b University Paris-Dauphine, Paris, France

a r t i c l e i n f o

Article history:

Received 30 November 2014

Revised 6 April 2015

Accepted 9 April 2015

Available online 18 April 2015

Keywords:

LDDMM

Diffeomorphisms

Splines

Image regression

Polynomials

Time series

a b s t r a c t

This paper develops a method for higher order parametric regression on diffeomorphisms for image regres-

sion. We present a principled way to define curves with nonzero acceleration and nonzero jerk. This work

extends methods based on geodesics which have been developed during the last decade for computational

anatomy in the large deformation diffeomorphic image analysis framework. In contrast to previously pro-

posed methods to capture image changes over time, such as geodesic regression, the proposed method can

capture more complex spatio-temporal deformations.

We take a variational approach that is governed by an underlying energy formulation, which respects the

nonflat geometry of diffeomorphisms. Such an approach of minimal energy curve estimation also provides a

physical analogy to particle motion under a varying force field. This gives rise to the notion of the quadratic,

the cubic and the piecewise cubic splines on the manifold of diffeomorphisms. The variational formulation

of splines also allows for the use of temporal control points to control spline behavior. This necessitates the

development of a shooting formulation for splines.

The initial conditions of our proposed shooting polynomial paths in diffeomorphisms are analogous to the

Euclidean polynomial coefficients. We experimentally demonstrate the effectiveness of using the parametric

curves both for synthesizing polynomial paths and for regression of imaging data. The performance of the

method is compared to geodesic regression.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the now common availability of longitudinal and time series

image data, models for their analysis are critically needed. In partic-

ular, spatial correspondences need to be established through image

registration for many medical image analysis tasks. While this can be

accomplished by pair-wise image registration to a template image,

such an approach neglects spatio-temporal data aspects. Instead, ex-

plicitly accounting for spatial and temporal dependencies is desirable.

A common way to describe differences in geometry of objects

in images is to summarize them using transformations. Transfor-

mations are fundamental mathematical objects and have long been

known to effectively represent biological changes in organisms (Amit

et al., 1991; Thompson et al., 1942). The field of computational

anatomy (Grenander and Miller, 1998; Miller, 2004; Miller et al., 1997;

Thompson and Toga, 2002) provides a rich mathematical setting for

statistical analysis of complex geometrical structures seen in 3D med-

ical images. At its core, computational anatomy is based on the rep-

resentation of anatomical shape and its variability using smooth and
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invertible transformations that are elements of the nonflat manifold

of diffeomorphisms with an associated Riemannian structure. The

large deformation diffeomorphic metric mapping (LDDMM) frame-

work of computational anatomy exploits ideas from fluid mechan-

ics and builds maps of diffeomorphisms as flows of smooth velocity

fields (Younes, 2010; Younes et al., 2009).

Research in the last decade provideds several methods to rep-

resent natural biological variability by modeling them as nonlinear

transformations in the manifold of diffeomorphisms. Their focus has

primarily been on geodesic models. For example, methods of Fréchet

mean (Davis, 2008), geodesic regression (Niethammer et al., 2011)

and hierarchical geodesic models (Singh et al., 2013a) are first order

models that rely on computing geodesics within the space of dif-

feomorphisms. While such models have proven to be effective, their

use is limited to modeling only “geodesic-like” image data. How-

ever, geodesics are not always appropriate for regression modeling of

time series data. In particular, nonmonotonous shape changes seen

in time sequence or videos of medical images of periodic breath-

ing, cardiac motion, or shape changes in the human brain during a

long age range (10–90 years), do generally not adhere to constraints

of geodesicity. This necessitates the development of higher order

models of regression within the space of diffeomorphic trans-

formations. Computational anatomy has seen very little work on
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Fig. 1. Models of parametric regression for computational anatomy. Geodesic regression generalizes the notion of parametric linear regression in the Euclidean spaces (left) to the

group of diffeomorphisms (right). The model estimate comprises of the initial velocity, v(0), at the identify diffeomorphism, e, and completely parameterizes the best fit regression

geodesic path, φ(t). However, no such generalizations of the known Euclidean models of higher order parametric regression such as the cubics or the splines (left) exist for the

group of diffeomorphisms (right).

higher-order models of registrations for modeling image time series

(Fig. 1).

Contribution. In this article we propose:

1. an acceleration-controlled model that generalizes the idea of cu-

bic curves to manifold of diffeomorphisms and is capable of mod-

eling nonmonotonic shape changes under the large deformation

(LDDMM) setting,

2. a shooting based solution to cubic curves that enables

parametrization of the full regression path using only initial

conditions,

3. a method of shooting cubic splines as smooth curves to fit complex

shape trends while keeping data-independent (finite and few) pa-

rameters, and

4. a numerically practical algorithm for regression of “non-geodesic”

medical imaging data.

The work described in this manuscript significantly extends our

work presented at MICCAI (Singh and Niethammer (2014)). In par-

ticular, (1) we make use of a new formulation directly advecting the

inverse of a diffeomorphism, (2) we provide extended discussions of

the approach, and (3) present a variety of new results to illustrate the

behavior of the approach.

1.1. Related work

Methods that generalize Euclidean parametric regression models

to manifolds have proven to be effective for modeling the dynam-

ics of changes represented in time series of medical images. For in-

stance, methods of geodesic image regression (Niethammer et al.,

2011; Singh et al., 2013b) and longitudinal models on images (Singh

et al., 2013a) generalize linear and hierarchical linear models, re-

spectively. Although the idea of polynomials (Hinkle et al., 2014)

and splines (Trouvé & Vialard, 2012) on the landmark representa-

tion of shapes has been proposed, higher-order extensions for im-

age regression remain deficient. While Hinkle et al. (2014) develop

an approach for general polynomial regression and demonstrate it

on finite-dimensional Lie groups, infinite dimensional regression is

demonstrated only for first-order geodesic image regression.

These parametric regression models are advantageous since their

estimated parameters can be used for further statistical analysis. For

instance, initial momenta obtained from Fréchet atlas construction of

a population of images can be treated as signature representations of

shape differences across the group and can be treated as features to

train classification and regression models (Singh et al., 2014).

Machado et al. (2006) also discuss the notion of first order varia-

tional fitting of curves to data on Riemannian manifolds. The solution

to the variational problem results in piecewise geodesics, where the

number of pieces is equal to the number of manifold data points.

Durrleman et al. (2013) present a method of regression analysis of

population of time series of shapes based on timewarping. This model

is presented for regression of shapes that do not trivially general-

ize to the regression of image time series data. The model also re-

sults in piecewise geodesics to summarize individual spatiotemporal

trends such that the number of pieces is data dependent. Following

the earliest ideas presented in Noakes et al. (1989), Camarinha et al.

(1995), Crouch and Leite (1995), the work of Machado et al. (2010)

further develops the notion of variational fitting to estimating piece-

wise higher order curves on data in general Riemannian manifolds.

The solution involves estimating the Riemannian curvature tensor

and is useful for finite dimensional manifolds where the tensor can

be evaluated analytically. Krakowski (2003) provides a theoretical

review of variational splines and explores, in particular, splines on

finite-dimensional manifolds such as the space of rotations, SO(3),
and the unit sphere, S

n.

Other regression methods include those by Davis et al. (2010),

Lorenzi et al. (2010), Vercauteren et al. (2009), Schwartz et al. (2015)

and Gu et al. (2006). Davis et al. (2010) generalize the notion of kernel

regression to manifolds. Kernel regression is a nonparametric ap-

proach and hence does not provide a summary representation of the

regression fit in terms of a finite set of parameters for further analysis.

Lorenzi et al. (2010) propose a smooth spatiotemporal modeling of

image time series data using the regression of pairwise registrations

under the stationary velocity field (SVF) framework of LogDemons

(Vercauteren et al., 2009). More recently, Schwartz et al. (2015) ex-

tend this idea and propose locally linear regression under the SVF

framework. Gu et al. (2006) develop the spline interpolation for the

case when the domain of the independent variable itself is a mani-

fold. This is useful for surface interpolation, for example, in graphics

or geometric design to interpolate surfaces represented on manifold

domains that give rise to shapes with arbitrary topologies.

Relevant background readings include those by Noakes et al.

(1989), Camarinha et al. (1995), Crouch and Leite (1995), where the

notion of splines on general Riemannian manifolds were first intro-

duced. These series of papers discuss a theoretical characterization

of the general variational cubic curves and spline interpolation. In

this paper, we present a shooting based formulation of the classical

variational spline formulation and derive its solution and numerical

estimation procedures for the group of diffeomorphisms.

The remainder of this article is structured as follows: Section 2

reviews the variational approach to splines in Euclidean space and

motivate its shooting formulation for parametric regression. Section 3

then generalizes this concept of shooting splines for diffeomorphic

image regression. We discuss experimental results in Section 4, and

conclude the article with a discussion of future work in Section 5.

2. Shooting-splines in the Euclidean case

To motivate our formulation for splines on diffeomorphisms it is

instructive to first revisit the variational formulation for splines in the

Euclidean case. This facilitates a more straightforward presentation
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