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a b s t r a c t

The goal of tumor growth prediction is to model the tumor growth process, which can be achieved by physio-

logical modeling and model personalization from clinical measurements. Although image-driven frameworks

have been proposed with promising results, several issues such as infinitesimal strain assumptions, compli-

cated personalization procedures, and the lack of functional information, may limit their prediction accuracy.

In view of these issues, we propose a framework for pancreatic neuroendocrine tumor growth prediction,

which comprises a FEM-based tumor growth model with coupled reaction-diffusion equation and nonlinear

biomechanics. Physiological data fusion of structural and functional images is used to improve the subject-

specificity of model personalization, and a derivative-free global optimization algorithm is adopted to facili-

tate the complicated model and accommodate flexible choices of objective functions. With this flexibility, we

propose an objective function accounting for both the tumor volume difference and the root-mean-squared

error of intracellular volume fractions. Experiments were performed on synthetic and clinical data to verify

the parameter estimation capability and the prediction performance. Comparisons of using different biome-

chanical models and objective functions were also performed. From the experimental results of eight patient

data sets, the average recall, precision, Dice coefficient, and relative volume difference between predicted

and measured tumor volumes were 84.5 ± 6.9%, 85.8 ± 8.2%, 84.6 ± 1.7%, and 14.2 ± 8.4%, respectively.

Published by Elsevier B.V.

1. Introduction

The goal of tumor growth prediction is to accurately model the

tumor growth process, which is mainly achieved by physiological

modeling and model personalization from clinical measurements.

If accurate prediction can be achieved from noninvasive measure-

ments, better treatment planning and patient prioritization can be

determined, allowing more efficient use of resources. For example, if

tumor doubling times of pancreatic neuroendocrine tumors can be

estimated, the risk of metastatic disease, operative resection, and un-

necessary testing can be better managed (Blansfield et al., 2007). Fur-

thermore, if phenotype or genotype information can be revealed from

the personalized growth model, outcomes of drug treatments can be

improved with reduced toxicity (Clayton et al., 2006; Schilsky, 2010).

Tumor growth modeling is particularly pertinent for tumors that

are either unresectable, or that are not removed until they reach

a certain size threshold (Ehehalt et al., 2009; Kazanjian et al., 2006).
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Therefore, image-based tumor growth modeling has been actively re-

searched. Image-based tumor growth personalization requires three

key components: a tumor growth model, medical images, and a pa-

rameter estimation algorithm. The tumor growth model accounts

for the general physiological properties derived from ex vivo or

in vitro experiments, or in vivo animal tests, providing a powerful

tool for tumor growth prediction. On the other hand, medical im-

ages provide the in vivo measurements of the patient, revealing the

structural or functional information of the underlying physiological

status. Through computational or mathematical algorithms, the com-

plementary information from the model and images can be combined

together to provide patient-specific tumor growth prediction.

Tumor growth is the abnormal growth of tissue, which usually

involves cell invasion and mass effect (Friedl et al., 2012). In collec-

tive cell invasion, tumor cells migrate as a cohesive and multicel-

lular group with retained cell-cell junctions and penetrate to the

surrounding normal tissues. Mass effect is caused by expansive

growth, for which the increase in tumor volume leads to multi-

cellular outward pushing with intact cell-cell junctions, and tumor

cells may be displaced by the volume expansion and pushing. If cou-

pled with migration, mass effect contributes to and enhances collec-

tive invasion. To model invasion and mass effect, most image-based
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frameworks use macroscopic models to trade-off between realism

and computationally efficiency. Cell invasion has mostly been mod-

eled through reaction-diffusion equations which describe cell migra-

tions and proliferations (Chen et al., 2013; Clatz et al., 2005; Hogea

et al., 2008; Konukoglu et al., 2010; Liu et al., 2014; Menze et al., 2011).

Cell migrations have been modeled as diffusion of cell densities, which

can be anisotropic or inhomogeneous when the corresponding tissue

structure information is available (Clatz et al., 2005; Hogea et al.,

2008; Konukoglu et al., 2010; Menze et al., 2011). Cell proliferations

have been modeled as the increase of local cell densities, which can

be described by the logistic function (Hogea et al., 2008; Konukoglu

et al., 2010; Liu et al., 2014; Menze et al., 2011) or the Gompertz func-

tion (Chen et al., 2013; Clatz et al., 2005). Mass effect has usually been

modeled using biomechanics. Although nonlinear mechanics should

be used for soft tissue modeling (Fung, 1993) and is the mainstream in
the tissue growth modeling society (Menzel and Kuhl, 2012), for sim-

plicity, most image-based tumor growth modeling frameworks use

the less realistic linear stress–strain relation with infinitesimal strain

assumption (Chen et al., 2013; Clatz et al., 2005; Hogea et al., 2008;

Liu et al., 2014) with few exceptions (Kyriacou et al., 1999). Different

approaches have been used to incorporate the mechanical models,

such as using the traditional solid mechanics approaches with finite

element methods (FEM; Clatz et al., 2005; Chen et al., 2013), or ap-

proximating the mechanical effects as an extra advection term in the

reaction-diffusion equation (Hogea et al., 2008; Liu et al., 2014).

For subject-specific tumor growth prediction, different person-

alization frameworks have been proposed to incorporate different

image modalities to personalize different tumor growth models. In

Hogea et al. (2008), a reaction-advection-diffusion equation describ-

ing both the invasion and mass effect of brain gliomas growth was

solved using a fictitious domain method. Using a Lagrangian func-

tional with manually identified landmarks from brain magnetic res-

onance images (MRI) as measurements, the model was personalized

using adjoint-based partial-differential-equation-constrained (PDE-

constrained) optimization. In Konukoglu et al. (2010), a reaction-

diffusion-based brain gliomas growth model was personalized

using structural information from MRI and diffusion tensor images.

The evolution of the tumor delineation was approximated by a mod-

ified anisotropic eikonal model, which could be efficiently solved by

a recursive anisotropic fast marching approach. By fixing the prolif-

eration rates, the diffusion coefficients were estimated by comparing

between the simulated and measured tumor delineations using the

UOBYQA (Unconstrained Optimization BY Quadratic Approximation)

optimization algorithm. In Chen et al. (2013), kidney tumor growth

was modeled by a coupled reaction-diffusion and linear mechanical

model, which was solved using FEM. Using the segmented tumor vol-

umes from contrast-enhanced computed tomographic (CT) images at

multiple time points, the model parameters were estimated by the hy-

brid optimization parallel search package (HOPSPACK). The estimated

proliferation rates at different time points were combined together

by exponential curve fitting to obtain the proliferation rate at the cur-

rent time point for the growth prediction. In Liu et al. (2014), using

a similar model and optimization approach in Hogea et al. (2008), a

multimodal framework was proposed for pancreatic tumor growth

prediction. With the intracellular volume fractions (ICVF) obtained

from contrast-enhanced CT images, and the standardized uptake val-

ues (SUV) obtained from 2-[18F]-fluoro-2-deoxy-D-glucose positron

emission tomography (FDG-PET), the model was personalized with

fused functional and structural information.

Although these frameworks are promising, several issues may

limit their prediction performances. For simplicity, most frameworks

use linear stress–strain relation with infinitesimal strain assump-

tion. In continuum mechanics, linear strain–displacement approxi-

mation should only be used when deformation is less than 5% (Bathe,

1996; Holzapfel, 2000), which is usually not the case for tumor

growth. Furthermore, most biological tissues should be modeled as

hyper-viscoelastic materials (Fung, 1993). For parameter estimation,

Hogea et al. (2008) and Liu et al. (2014) formulated the problem as

adjoint-based PDE-constrained optimization, whose formulations are

very complicated and the analytical derivatives of the model and ob-

jective function are required. Such an approach is not suitable for

more complex models, and may limit the choices of more realistic

models and better objective functions. Moreover, except Liu et al.

(2014), only structural but not functional information was utilized,

which may limit the patient-specificity of the personalized model

and thus its prediction capability.

In view of these issues, we propose here a framework for pan-

creatic neuroendocrine tumor growth prediction (Fig. 1). Pancreatic

neuroendocrine tumors are abnormal growths of hormone-producing

cells in the pancreas (Ehehalt et al., 2009; Ries et al., 2007). They are

very rare, with only about 1000 new cases in the United States per

year. They are also slow growing, and usually not treated until reach-

ing a certain size threshold. Our framework includes:

• A FEM-based tumor growth model with coupled reaction-

diffusion equation and hyperelastic biomechanical model to im-

prove physiological plausibility.
• A derivative-free global optimization algorithm for model param-

eter estimation to facilitate the complicated model and accommo-

date flexible choices of the objective function.
• Physiological data fusion of contrast-enhanced CT and FDG-PET

images to improve subject-specificity.

Using this framework, more complicated objective functions can

be studied, and we propose an objective function which accounts

for both the volume difference and the root-mean-squared error of

ICVF between simulations and measurements. Sensitivity analysis

was performed to understand the impacts of different model pa-

rameters. Experiments were performed on synthetic data to verify

the parameter estimation capability of the framework under differ-

ent growth rates, and on clinical data for the prediction performance

in reality. Comparisons of using different biomechanical models and

objective functions are also presented.

Although this work is partially based on the work of Liu et al.

(2014) in terms of computing ICVF from contrast-enhanced CT images

and computing proliferation rates from FDG-PET images, there are

fundamental differences between these two works:

(i) Biomechanical model. In this paper, a hyperelastic biomechanical

model is used instead of a linear model. Furthermore, in Liu et al.

(2014), the mechanical response was approximated as advection

in a reaction-advection-diffusion equation solved by the finite dif-

ference method, which is simple but physically less accurate. In

contrast, in this paper, the total-Lagrangian formulation is used

with FEM for more accurate mechanical response but increased

computational complexity.

(ii) Objective function. In Liu et al. (2014), only the ICVF differences

between the simulations and measurements were used. In this

paper, apart from the ICVF differences, the differences between

the simulated and segmented tumor volumes are also considered.

(iii) Optimization method. In Liu et al. (2014), the adjoint-based PDE-

constrained optimization was used to estimate the model param-

eters, which requires the analytical derivatives of the objective

function and model. In this paper, as the objective function and

model are more complicated, it is difficult to derive the analytical

derivatives and thus a more flexible gradient-free optimization

method is used.

In this paper, the macroscopic tumor growth model is described

in Section 2, followed by the image-derived information in Section 3,

and the model personalization in Section 4. Results of the sensitivity

analysis are presented in Section 5, and the experimental results on

synthetic and clinical data are presented in Section 6. The discussion

is provided in Section 7.
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