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a b s t r a c t

We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints

on the vessel structure. The method accounts for both image evidence and geometric relationships between

vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate

to a probabilistic model. Starting from an overconnected network, it is pruning vessel stumps and spurious

connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-

resolution micro computed tomography (μCT) dataset of a cerebrovascular corrosion cast to obtain a reference

network and learn the prior distributions of our probabilistic model and we perform experiments on in-vivo

magnetic resonance microangiography (μMRA) images of mouse brains. We finally discuss properties of the

networks obtained under different tracking and pruning approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many diseases affect general properties of the cerebrovascular

network, examples are arteriosclerosis and dilative vascular malfor-

mations changing vessel shape and diameter, but also Alzheimer’s and

related neuro-degenerative diseases are suspected to affect the gen-

eral vascularity and global network properties (Hunter et al., 2012;

Klohs et al., 2012). Studies investigating such diseases frequently use

mouse models for experiments and commonly acquire in-vivo cere-

brovascular imagery by means of magnetic resonance microangiog-

raphy (μMRA). While segmenting and tracing tubular structures is a

longstanding field of interest in medical image computing (Aylward

and Bullitt, 2002; Frangi et al., 1998; Kirbas and Quek, 2004; Lesage

et al., 2009), we approach here the wider – and somewhat neglected

(Jiang et al., 2010) – problem of extracting the full vascular network

from image volumes under consideration of local geometric proper-

ties and global constraints of the vascular structure.
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Most vessel segmentation techniques rely on tubularity measures

or other vessel enhancement filters (Frangi et al., 1998), and then ap-

ply rule-based or learned decision algorithms to segment the vessels

(Kirbas and Quek, 2004; Lesage et al., 2009; Schneider et al., 2015).

The network graph – representing vessels by their centerline, com-

plemented with additional information such as local radii – can be

extracted from binary segmentations using morphological operators

(Lee et al., 1994; Pudney, 1998), or by tracking vessels directly by min-

imal path techniques (Cohen and Kimmel, 1997), e.g. by applying a

fast marching algorithm (Benmansour and Cohen, 2011) or a Dijkstra-

like scheme (Gülsün and Tek, 2008). We point the interested reader

to Kirbas and Quek (2004) and Lesage et al. (2009) for more extensive

reviews. In most applications, however, the extracted graphs need

further post-processing: Lu et al. (2009), for example, incorporated

discriminative classifiers that examine local geometrical features of

segments into a hierarchical approach for vessel-structure parsing. In

order to deal with imperfections in vascular connectivity of extracted

networks, Kaufhold et al. (2012) discussed a supervised learning ap-

proach to gap filling and network pruning, whereas Schneider et al.

(2014) recently proposed a generative method for gap in-fill that

is guided by a simplified angiogenesis model. While segmentation
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Fig. 1. Workflow: In a first stage, the image volume I is processed so as to obtain an overconnected graph Gover as well as a confidence measure for vessels such as the confidence

map P(I). In the following step, the network G∗ is extracted from Gover in an optimization scheme that considers both image evidence (according to P(I)) and geometric-physiological

prior knowledge. In this paper, we focus on the network optimization step, where both image evidence and geometrical relationships of certain network motifs, namely continuing

pairs and bifurcations are considered.

algorithms are likely to enforce expected local vessel shape and

geometry, only few approaches consider both local properties and

global network connectivity when extracting the full network: Jiang

et al. (2011) incorporated assumptions about vessel diameters (Mur-

ray’s hypothesis (Murray, 1926)) in a global optimization problem

restricted to vascular trees. Tree shape priors have also been included

into the segmentation of vasculature by Stühmer et al. (2013). In a

different application, Türetken et al. (2015) introduced recently an in-

teger programming approach that evaluates path coherence and con-

nectivity of general curvilinear structures, such as streets in remote-

sensing images or vessels in confocal image stacks. Starting from an

overconnected graph, they are pruning edges that do not fulfill de-

sired structural relationships of neighboring segment pairs using a

path classifier that is trained from annotated 3-D networks.

All of these approaches enforce local coherence within the ex-

tracted network – a general property of the vascular network. More

complex local properties of a structural network, however, can be

described by network motifs (Alon, 2007; Milo et al., 2002). Network

motifs are frequently recurring subgraphs, also called building blocks,

that are characteristic for a type of network, such as bifurcations in

vascular networks.

In this paper, we enforce local geometrical properties similar to

Jiang et al. (2011), exploring the relevance of two basic motifs of vas-

cular networks, i.e., the geometrical properties of continuing segment

pairs and of vessel bifurcations and following the idea of pruning of

Türetken et al. (2015). We present a probabilistic model which com-

bines this geometric prior with local vessel evidence obtained from

a segmentation algorithm (Schneider et al., 2015), and show that the

maximum a posteriori (MAP) estimate can be computed by an inte-

ger linear program (ILP). We learn the global statistic of geometrical

properties of the network motifs from a high resolution dataset. Fi-

nally, we identify a more efficient scheme to solve the ILP for large

datasets and illustrate its application for reconstructing vascular net-

works from in-vivo μMRA images of the mouse brain.

2. Methods

In this section, we detail on the proposed vessel network extrac-

tion method that estimates the most probable network under con-

sideration of image evidence and physiological prior knowledge. As

depicted in the workflow (Fig. 1), this method starts from an over-

connected network graph Gover. Hence, we briefly review the applied

segmentation framework and skeletonization method as used in our

experiments.

2.1. Vessel segmentation method and construction

of the overconnected graph

As a first stage, we transform image intensities into confidence

maps by using the framework of Schneider et al. (2013, 2015): In

I,G X Ω

Fig. 2. Probabilistic model. I: Image; G: (overconnected) Graph; X: Set of binary vari-

ables denoting subgraphs of G; �: Set of feasible configurations of x.

this approach, multiscale steerable filter templates (SFT) are used as

efficient directional filters, offering features that are invariant with

respect to the local vessel direction. An oblique random forest (RF)

(Menze et al., 2011), which determines splits by solving a linear re-

gression with elastic net penalty in each node, is used for a subsequent

classification. The RF assigns each voxel v in an image volume I to a

probability pv � [0, 1], indicating the local presence of a vessel-like

structure.

We apply a threshold θ to the probability volume P(I) and skele-

tonize the resulting binary volume using distance-ordered homotopic

thinning (DOHT) (Pudney, 1998), a method that iteratively removes

voxels without altering the objects topology, to derive a network

graph G(θ ). We obtain an overconnected network by generating mul-

tiple binary segmentations from P(I) with different thresholds {θ i},

skeletonizing each of them by DOHT to G(θ i) and superposing them

into one network Gover({θ i}). The resulting network contains both seg-

ments with low confidence (contributed by graphs from low thresh-

olds θ close to 0), but maintains the high spatial accuracy of a graph

that is generated from conservative thresholds (i.e., with θ close to 1).

Note, however, that any method which generates an overconnected

graph Gover by proposing local vessel connections could be used in-

stead.

2.2. Vessel network extraction

The goal of our method is to find the most plausible network G∗ out

of an overconnected network graph Gover = (V, E) with edges E = {ei}

and given image evidence P(I). We encode subgraphs of Gover with a

set of binary variables X = {xi} where each xi indicates whether or not

the corresponding segment ei � E is active (i.e. xi = 1). Therefore, we

arrive at the equivalent problem of determining the MAP estimate of

x � {0, 1}|E|, for which we describe a probabilistic model (Section 2.2.1)

that considers image evidence, local properties of specific network

motifs as well as global connectivity, and derive an ILP that allows

computing the MAP network (Section 2.2.2).

2.2.1. Probabilistic model

We formulate a probabilistic model P(X = x, �|I, G) according to

Fig. 2, where I is the image evidence, G is the given (overconnected)

graph and X is the set of binary variables denoting subgraphs of G. �

is the set of all feasible solutions of x:

� = {x ∈ {0, 1}|E| : Ax ≥ b}, (1)

with Ax � b being the short notation for all hard constraints that will

be considered such as those enforcing connectivity. This introduces a
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