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a b s t r a c t

Registration plays an important role in group analysis of diffusion-weighted imaging (DWI) data. It can be
used to build a reference anatomy for investigating structural variation or tracking changes in white mat-
ter. Unlike traditional scalar image registration where spatial alignment is the only focus, registration of
DWI data requires both spatial alignment of structures and reorientation of local signal profiles. As such,
DWI registration is much more complex and challenging than scalar image registration. Although a
variety of algorithms has been proposed to tackle the problem, most of them are restricted by the
zdiffusion model used for registration, making it difficult to fit to the registered data a different model.
In this paper we describe a method that allows any diffusion model to be fitted after registration for sub-
sequent multifaceted analysis. This is achieved by directly aligning DWI data using a large deformation
diffeomorphic registration framework. Our algorithm seeks the optimal coordinate mapping by simulta-
neously considering structural alignment, local signal profile reorientation, and deformation regulariza-
tion. Our algorithm also incorporates a multi-kernel strategy to concurrently register anatomical
structures at different scales. We demonstrate the efficacy of our approach using in vivo data and report
detailed qualitative and quantitative results in comparison with several different registration strategies.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion-weighted imaging (DWI) is widely used to non-inva-
sively study white matter microstructure and fiber tracts in the
human brain. The information provided by DWI is helpful for iden-
tifying pathological damages associated with brain diseases (e.g.,
stroke Schaefer et al., 2000, Alzheimer’s disease Hanyu et al.,
1998; Wee et al., 2011, 2012; Zhang et al., 2013, and schizophrenia
Shi et al., 2012) and brain changes associated with normal develop-
ment (Yap et al., 2011).

To quantify white matter changes, a common space is required
where images of patients and healthy controls can be spatially nor-
malized and compared. Image registration is used to build such
space and to spatially normalize the images by warping them to
the space.

Traditional scalar image registration techniques are not directly
applicable to diffusion-weighted images. When diffusion-weighted
images corresponding to different diffusion gradient directions are

put together, each voxel location encodes a vector-valued signal
profile that provides information on the segment of the fiber
bundle that traverses the voxel. As such, registration of diffusion-
weighted images requires not only the spatial alignment of
anatomical structures, as in scalar image registration, but also
the reorientation of signal profiles with respect to the surrounding
anatomical structures, which is not considered in scalar image reg-
istration. DWI registration is thus much more complicated and
challenging than scalar image registration.

A common approach to registering diffusion-weighted images
is to fit some diffusion model to the images to estimate angular
quantities, such as orientation distribution functions (ODFs), and
then incorporate such information into a registration algorithm
for structural alignment. There are a number of choices of diffusion
models as well as registration algorithms, leading to a variety of
DWI registration methods.

Early work uses the relatively simple diffusion tensor model
(Alexander et al., 2001; Cao et al., 2006; Yeo et al., 2009,, 2010;
Zhang et al., 2006). Alexander et al. (2001) introduced the preser-
vation of principal direction (PPD) algorithm for the reorientation
of diffusion tensors during image alignment. Instead of PPD, Yeo
et al. (2009) used a finite strain reorientation strategy (Alexander
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et al., 2001) together with a diffeomorphic demons algorithm
(Vercauteren et al., 2009) for registration. Zhang et al. (2006) broke
down the image into uniform regions and estimated an affine
transformation for each region by explicitly optimizing tensor ori-
entation within that region. Cao et al. (2006) proposed a large
deformation diffeomorphic metric mapping (LDDMM) algorithm
(Beg et al., 2005) to tackle large-deformation non-linear registra-
tion of directional vector fields.

However, the diffusion tensor model can only characterize one
principal fiber direction at each voxel and thus is unable to handle
complex fiber configurations such as crossings. It has been found
that at least one third of voxels in white matter have complex fiber
configurations (Behrens et al., 2007). Obviously, failure to reorient
the signal profiles in those voxels will lead to misalignments of
microstructure.

To deal with crossing fibers, a number of researchers (Geng
et al., 2011; Du et al., 2012; Hong et al., 2009; Raffelt et al.,
2011; Yap et al., 2011; Dhollander et al., 2011; Zhang et al.,
2012) attempted to use more complicated diffusion models. Geng
et al. (2011) aligned ODFs represented by spherical harmonics
(SHs) using an elastic registration algorithm. Du et al. (2012) inte-
grated a similarity metric for the ODFs, which is defined in a Rie-
mannian manifold, into a variant of LDDMM algorithm (Glaunès
et al., 2008). Yap et al. (2011) extracted coarse-to-fine features
from the ODFs for hierarchically refined alignment. Instead of
using ODFs, Hong et al. (2009) performed registration with the
help of T2-weighted images and subsequently reoriented the fiber
orientation distribution (FOD). Raffelt et al. (2011) registered DWI
data by mapping the FODs through a subject-template-symmetric
diffeomorphic framework.

However, the aligned data generated by the above approaches
are not in the form of diffusion-weighted images. The ability to
produce diffusion-weighted images as final registration outcome
is important for common-space analysis using diffusion models
without well-defined warping and reorientation methods.

To overcome this problem recent studies propose to register
DWI data directly in the Q-space (Dhollander et al., 2011; Zhang
et al., 2012). Dhollander et al. (2011) tackled the problem by virtue
of an SH-based reorientation algorithm together with a diffeomor-
phic demons algorithm (Vercauteren et al., 2009). We (Zhang et al.,
2012) achieved a similar goal by using a set of diffusion basis
functions (DBFs) (Yap and Shen, 2012) and a geodesic shooting
algorithm simplified proposed by Ashburner and Friston (2011).
Both methods regard spatial alignment and local signal profile
reorientation as two separate components, and perform
optimization by alternating between (i) computing the spatial
mapping without considering reorientation, and (ii) reorienting
the data using the resulting mapping. Although this strategy is
simple, it ignores the crucial role reorientation plays in correspon-
dence establishment.

As shown by Yeo et al. (2009), a better but more complicated
strategy is to integrate the two components into a single cost func-
tion and explicitly take into account reorientation during registra-
tion. In this paper we describe a method that is able to register
DWI data in the Q-space in a single framework where image
matching, data reorientation, and deformation regularization are
considered simultaneously. Part of this work has been reported
in our recently published conference paper (Zhang et al., 2013).
Herein, we provide additional derivations, implementation details,
and experimental results that are not available in the conference
version. Compared with the conference paper, this paper uses a
more general symmetric tensor model, instead of Watson
distribution, as the DBFs (Yap and Shen, 2012). In addition, the cost
function is reformulated such that the solution satisfies the
Euler–Lagrange equation.

2. Outline of the approach

Our method consists of two components: (1) DWI data reorien-
tation (Section 3) and (2) an LDDMM-based registration algorithm
(Section 4). The first component achieves reorientation in the Q-
space while the second one provides a registration framework
where alignment and reorientation are considered simultaneously.

The first component is realized based on the work of Yap and
Shen (2012), where reorientation is achieved by three steps: (i)
decomposing the diffusion signal profile into a set of weighted
DBFs; (ii) reorienting each DBF independently using a local trans-
formation; (iii) recomposing the reoriented DBFs to obtain the
desired profile. Compared with the SH-based reorientation scheme
as used by Dhollander et al. (2011), this strategy avoids the compu-
tational complexity of SHs as well as the loss of sharp directional
information when the maximum order of the SH basis functions
is insufficient (see Yap and Shen (2012) for detailed discussion).

The second component involves the LDDMM algorithm (Beg
et al., 2005). Based on the spatial mapping estimated by the
LDDMM algorithm, a Jacobian matrix can be computed at each
voxel location and used for DBF reorientation. The interaction
between the two components is mathematically expressed as a
single cost function (Section 4) and, during optimization, spatial
alignment and local reorientation are considered simultaneously.

To simultaneously register anatomical structures at different
scales we use a multi-kernel strategy (Risser et al., 2011). This is
to introduce a natural multi-resolution property to our registration
algorithm and to provide an intuitive way of parameter tuning
based on the desired scales that should be captured by the registra-
tion. Details are given in Section 5.1.

This work has three major contributions. First, we propose a
non-rigid registration algorithm for direct registration of DWI data.
This allows any diffusion model to be fitted to the aligned data for
subsequent multifaceted analysis. Second, we incorporated spatial
alignment and local reorientation into a single cost function. In
contrast to the works of Dhollander et al. (2011) and Hsu et al.
(2012), our method does not rely on multi-shell data, which
require long acquisition time. Last but not least, we derive the gra-
dient of the cost function and describe in detail the numerical
implementation.

3. Reorientation of DWI data

We now briefly review the major concepts involved in
reorientation using DBFs (Yap and Shen, 2012).

3.1. Decomposition of signal profile

Let SðqiÞ be the diffusion signal measured in direction qi

(i ¼ 1; . . . ;M). It can be represented by a set of N DBFs:

SðqiÞ ¼ w0f0 þ
XN

j¼1

wjf ðqijk1; k2;ljÞ;

where f ðqijk1; k2;ljÞ is the j-th DBF, wj is the associated weight, and
f0 is a constant component representing isotropic diffusion. Specif-
ically, the j-th DBF is defined by

f ðqijk1; k2;ljÞ ¼ expð�bqT
i DjqiÞ; ð1Þ

where b is the diffusion weighting and Dj ¼ ðk1 � k2Þljl
T
j þ k2I is a

symmetric diffusion tensor. k1 and k2 control the shape of the ten-
sor, {lj} is a pre-defined set of tensor principal directions and I is an
identity matrix representing an isotropic tensor. We generated {lj}
via spherical tessellation by subdividing the faces of an icosahedron.

If k1 � k2;Dj can be approximated by k1ljl
T
j . Then, we have
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