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a b s t r a c t

The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting
increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate
the needed transformation between both imaging systems, we employ a discriminative learning (DL)
based approach to localize the TEE transducer in X-ray images. The successful application of DL methods
is strongly dependent on the available training data, which entails three challenges: (1) the transducer
can move with six degrees of freedom meaning it requires a large number of images to represent its
appearance, (2) manual labeling is time consuming, and (3) manual labeling has inherent errors.

This paper proposes to generate the required training data automatically from a single volumetric
image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy
images to estimate differences in feature space density and correct covariate shift by instance weighting.
Two approaches for instance weighting, probabilistic classification and Kullback–Leibler importance
estimation (KLIEP), are evaluated for different stages of the proposed DL pipeline. An analysis on more
than 1900 images reveals that our approach reduces detection failures from 7.3% in cross validation on
the test set to zero and improves the localization error from 1.5 to 0.8 mm. Due to the automatic gener-
ation of training data, the proposed system is highly flexible and can be adapted to any medical device
with minimal efforts.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Catheter-based procedures such as trans-aortic valve implanta-
tion (TAVI) or paravalvular leak closure are gaining increasing
importance for the treatment of structural heart disease. The
inherent challenge for the cardiac interventionalist is to infer the
exact position of the catheter relative to the tissue from the avail-
able imaging information. X-ray fluoroscopy is the dominant
imaging modality for these interventions, increasingly supported
by 3D trans-esophageal echography (TEE) (Gao et al., 2012). Both
modalities show complementary information, but in clinical prac-
tice they are controlled and displayed completely independently
from each other.

Recently, image fusion has been proposed to combine both
modalities and to provide the cardiac interventionalist with a
better overview of the in situ conditions. The co-registration can
be accomplished by means of electromagnetic (EM) tracking (Jain
et al., 2009), but this approach requires EM tracking hardware to
be attached to the transducer and is sensitive to EM field distor-
tions. In Ma et al. (2010), authors present a feasibility study with
a robotic arm for tracking a trans-thoracic echo probe. Apart from
the difficulties of extending this system to TEE probes, the robotic
hardware requirements severely limit the practical applicability of
this approach. Alternatively, the pose of the transducer can be
estimated from its appearance in the X-ray images, either directly
(Gao et al., 2012; Mountney et al., 2012) or supported by fiducial
markers attached to the probe head (Lang et al., 2012). Since the
former approach does not require additional hardware, it is
advantageous for integration into the clinical workflow, albeit
more challenging to implement.

While 2D–3D registration (Gao et al., 2012) yields accurate
results, it has a limited capture range of <10 mm, requiring a
manual initialization every time a new fluoroscopy sequence is
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acquired. Discriminative learning (DL) (Mountney et al., 2012) can
locate the TEE probe everywhere in the image, but its performance
is strongly dependent on quantity and quality of the available
training data. In the medical domain, data is generally difficult to
acquire, and the required manual labeling is an extremely tedious
and time-consuming task. Moreover, trained operators cannot
reproducibly annotate images with perfect accuracy, and every
variation in ground truth will decrease the performance of the
resulting DL system.

In this paper, we propose a novel approach for training a DL
system based on in silico training data that can be generated auto-
matically in large quantities with perfectly accurate labels. Since
synthetic image generation cannot faithfully model all aspects of
in vivo fluoroscopy data, the DL system must be adapted. For this
purpose we employ unsupervised domain adaptation, a technique
which has been widely used in speech processing and has recently
gained attention in the computer vision community (Margolis,
2011; Beijbom, 2012). In particular, we show how unlabeled data
from the target domain (i.e. in vivo images) can be used to improve
the performance of object localization beyond what is achievable
with semi-supervised learning (Zhu, 2008). We apply our approach
to the estimation of in-plane parameters of a TEE probe in fluoros-
copy images, i.e. 2D position, in-plane orientation, and scale.

This article is an extended version of Heimann et al. (2013); it
explains the methodology in more detail and adds a number of
new experiments to the domain adaptation. While based on the
same image data, this new version uses updated, more accurate
annotations for the in silico images, which leads to slightly different
results in the evaluation. We start with presenting the basic learn-
ing method in the next section and explain our adaptation
approach afterwards.

2. Learning from synthetic data

2.1. Generation of in silico images

The synthetic training data is based on digitally reconstructed
radiographs, which approximate X-ray images from computed
tomography (CT) volumes. The source is a high-resolution
(0.18 mm/voxel) isotropic C-arm CT of the TEE transducer, which
was aligned to the image axes and cropped to contain only the
probe head. A binary mask of the transducer was prepared and
multiplied with the original volume to remove streak artifacts in
the surrounding air. Fig. 1 shows the final transducer volume in
three-plane view and volume visualization.

For each synthetic image, we set up a virtual scene that repre-
sents a realistic C-arm geometry. The camera is located 120 cm
away from the image plane and features a view angle between
6.5 and 11 degrees, simulating different zoom modes of the
C-arm. The 3D position and three Euler angles of the virtual trans-
ducer are randomized with the constraints that (a) the probe is
located at a distance between 33 and 47 cm away from the image

plane, (b) the projected probe is completely inside the image
frame, and (c) the probe head is oriented in inferior direction.
The flexible tube to which the probe is attached is modeled by a
3D spline originating from a random position at the upper image
boundary. Along this spline, a collection of rings is positioned in
regular pattern. This is consistent with in vivo images captured
during structural heart procedures.

2D projections are generated using a composite ray-caster, i.e.
every pixel is assigned the sum of all values along the respective
ray through the volume. Key to generating realistic-looking images
is the transfer function used to calculate the opacities along the
ray. Based on the appearance of in vivo images, we chose an expo-
nential transfer function with randomized parameters in order to
generate sequences with slightly varying appearance and contrast.
A gray value x > 0 in the TEE volume maps to opacity aðxÞ as
follows:

aðxÞ ¼ c0 exp
x
c1

� �
� 1

� �
exp

7500
c1

� �
� 1

� ��
ð1Þ

with c0 2 ½0:08;0:12� setting the opacity for gray value 7500 and
c1 2 ½2200;3800� setting the contrast as randomized parameters.
Fig. 2 shows some example curves for different values of c0; c1.

As background, we used 12 cardiac fluoroscopy sequences with-
out transducer and combined them with the generated ray-caster
images by additive blending. Annotations were created automati-
cally by storing the 2D position of a fixed point in the center of
the transducer together with the respective Euler angles and the
probe scale. Since the apparent size in the projected 2D image
varies with the rotation angles, scale is measured as the width of
upper-most, circular part of the transducer which connects to the
flexible tube. Fig. 3 gives an impression of the look of the generated
images compared to in vivo data.

2.2. Transducer localization by discriminative learning

Following the marginal space learning approach (Zheng et al.,
2008), transducer localization is performed in several stages by a
pipeline of three discriminative classifiers. The first classifier U
employs Haar-like features xH (Viola and Jones, 2004) to determine
the 2D position of the probe in images rescaled to 1 mm isotropic
pixel spacing. All pixels closer than 1 mm to the reference annota-
tion are labeled as y ¼ Yþ, all others as y ¼ Y�. During detection,
the 50 candidates with the highest classifier output p̂Uðy ¼ YþjxHÞ
are passed on to the in-plane orientation detector H.

Fig. 1. 3D visualization of the processed C-arm CT volume of an X7-2t 3D TEE
transducer (Philips, The Netherlands). Fig. 2. Examples for different transfer curves used for generating in silico images.
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