Atmospheric Environment 44 (2010) 3926—3934

journal homepage: www.elsevier.com/locate/atmosenv

ATMOSPHERIC |
ENVIRONMENT

Contents lists available at ScienceDirect

Atmospheric Environment

Optimizing emission inventory for chemical transport models
by using genetic algorithm

M.J. Li, D.S. Chen*, S.Y. Cheng**, F. Wang, Y. Li, Y. Zhou, ].L. Lang

College of Environmental & Energy Engineering, Beijing University of Technology, Pingleyuan 100#, Beijing 100124, China

ARTICLE INFO

Article history:

Received 20 January 2010
Received in revised form
6 July 2010

Accepted 8 July 2010

Keywords:

Genetic algorithm
Emission inventory
Chemical transport models
CMAQ

ABSTRACT

Air pollutant emission inventory is an important input parameter for chemical transport models (CTMs).
Since great uncertainties exist in the emission inventory, further improvements and refinements are
required. In this paper, genetic algorithm (GA), a global search and optimization method, was applied to
optimize the emission inventory for the Models-3/Community Multiscale Air Quality (CMAQ) model. An
emission optimizing system based on GA was developed and embedded to the CMAQ through the design
of several core modules, which implemented the basic functions such as emission adjusting, GA pop-
ulation initializing, CMAQ results evaluating and GA operating. Hypothetical and real-data experiments
were respectively performed to examine the validity of GA for emission calibrating. GA showed good
performance in both experiments and was always able to find the global minimum. The emission
optimizing system was then used to calibrate seasonal PMjp emission inventories of Beijing. Results
revealed that PMjp emission in Beijing was underestimated in 2002, an average of 62.74% higher
adjustment factor should be imposed on the original emission in target months of different seasons.
With the calibrated emission inventories, CMAQ model errors were decreased by 6.46% on average in
different seasons. It was concluded that GA was a promising search technique in calibrating emission

inputs for CTMs.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate emission inventory of chemical species plays an
important role in chemical transport models (CTMs) because
quantitative estimates of emissions are an important input
parameter for CTMs, and their uncertainty largely determines the
accuracy of the model outputs (Yumimoto and Uno, 2006). Emis-
sion inventories have usually been developed by the so-called
bottom-up approach, which is based on combinations of activity
statistics (such as energy consumption and industrial production)
and source-specific or region-specific emission factors (Hao et al.,
2002; Streets et al., 2003). In bottom-up emission inventories
there are large uncertainties associated with the statistics, emission
factors, temporal allocation profiles, and grid allocation factors.
Thus these emission inventories require further improvements and
refinements using information of observation data and output of
numerical models.
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Generally, there are mainly two approaches to optimize emis-
sion inventory of CTMs. One is the ensemble Kalman filter (EnKF)
data assimilation and the other is the four-dimensional variational
(4D-Var) data assimilation method. Both of the two approaches
have been proved to be useful in various applications. Van Loon
et al. (2000) applied EnKF in chemical data assimilation to
recover ozone and emissions. His work indicated that it is possible
to apply EnKF to atmospheric chemical transport models. Gilliland
et al. (2003) used a Kalman filter inverse modeling technique to
deduce NH3 emissions inventories for the eastern United States in
1990. Napelenok et al. (2008) evaluated spatially-resolved NOx
emissions using Kalman filter and a controlled scenario with
a known solution was used to prove that the methodology can
achieve the correct solution.

The 4D-Var method has been widely applied in inverse modeling
of CTMs. Elbern and Schmidt (1999) applied 4D-Var to EURAD-
CTM2 modeling system and verified 4D-Var implementation by
identical twin experiments. Elbern et al. (2001) and Elbern and
Schmidt (2001) estimated NOx and VOC emissions from ozone
observations, and optimized ozone initial conditions over central
Europe using 4D-Var method. Engelen et al. (2004) and Engelen and
McNally (2005) estimated atmospheric CO; from AIRS radiance data
within the ECMWEF 4D-Var data assimilation system. Muller and
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Stavrakou (2005) estimated CO and NOx emissions using the adjoint
version of a global IMAGE model from ground-based and GOME
satellite observations. Hakami et al. (2005) estimated black-carbon
emissions over eastern Asia using the adjoint STEM-2K1 model.
Yumimoto and Uno (2006) applied a 4D-Var data assimilation
system to inverse modeling of CO emissions in the eastern Asia.
Kurokawa et al. (2009) developed an adjoint inverse modeling
system to optimize NOx emissions over eastern China using satellite
observations of NO, vertical column densities (VCDs) and a priori
emissions from the Regional Emission Inventory in Asia (REAS).

As research continues, the merits and flaws of the two
approaches were discussed. The adjoint model and gradient of the
objective function are required in 4D-Var, but in some complicated
models like CMAQ, it is not easy to obtain them. Ensemble Kalman
filter (EnKF) has a main limitation (Van Loon et al., 2000) that it
assumes model error distribution to be Gaussian, but actually,
model errors will not be Gaussian in some specific cases. It is
beyond the scope of this study to discuss the advantages and
drawbacks of the different methods. A detailed comparison of the
relative merits of EnKF and 4D-Var can be found in Lorenc (2003)
and Kalnay et al. (2007).

The genetic algorithm (GA), which solves the optimization
problem in fundamentally new ways, may be another potential way
to optimize emission inventory for CTMs. Genetic algorithm is
a search procedure based on the mechanics of natural selection and
natural genetics, combining an artificial survival of the fittest with
genetic operators abstracted from nature (Holland, 1975; Goldberg,
1989). Based on multiple search directions, GA is easier to escape
from a local minimum. As a global optimization method, it has been
proved to be useful in parameter estimation of water environ-
mental modeling. Wang (1997) introduced genetic algorithm to
calibrate a conceptual rainfall-runoff model with nine parameters
using both hypothetical data and real data. Liu et al. (2007) used
genetic algorithm to carry out the model calibration in a water
quality model. They analyzed the impact of operators on its effec-
tiveness in optimum searching in the GA. However, until now,
genetic algorithm has scarcely been used in optimizing the emis-
sion inventory for CTMs.

In the present study, a GA optimizing system was developed to
optimize air pollutant emission inventory for the Models-
3/Community Multiscale Air Quality (CMAQ) model. We presented
the establishment of the air pollutant emission inventories in Bei-
jing and introduced the design of the emission optimizing system.
This system is tested in both idealized and real data settings, and
then applied in optimizing the seasonal emission inventory of
Beijing. Finally, PMjp concentrations were simulated using the
CMAQ model with the calibrated emission inventory, and modeling
results were compared with that using the original one.

2. Background
2.1. Overview of the study area

Beijing, the capital city of China, is situated at 40 degrees north
latitude and 116 degrees of longitudes (39°08’-41°05'N, 115°25’-
117°30’E), with Tianjin on its eastern border and Hebei Province on
the other three sides. It covers an area of 16,800 square kilometers,
with 62% of the total area being mountainous and other 38% being the
plain area. With the rapid economic development, problems of
environment have become serious in Beijing. High coal consumption,
growing use of vehicles, lacking of dust pollution control, together
with its basin-like topography and adverse weather conditions are
considered as the main factors leading to Beijing’s PM;g pollution.

Among all air pollutants, PMyg is considered to be the primary
pollutant for Beijing (Chen et al., 2007a,b; Wang et al., 2010). Based

on the 24 hour average monitoring data published by Beijing
Environmental Protection Bureau (BJEPB), we can find that the
primary pollutant for Beijing is almost always PMyo (http://www.
bjepb.gov.cn/). A precise PMjg emission inventory is urgently
required for air quality simulation and environmental management
in Beijing.

2.2. The original emission inventory in Beijing

Emission inventories, lateral boundary conditions and initial
conditions are considered to be main sources of uncertainties in
atmospheric CTMs (Constantinescu et al., 2007) in addition to
meteorological fields. In China, uncertainties in the emission
inventory were regarded as the primary source of model errors in
air quality forecasts (Xu et al.,, 2008). The erroneous emission
inventory was therefore the major concern of this paper. In our
research, efforts have been made to reduce the effects of meteo-
rological fields, boundary conditions and initial conditions. So we
assumed the model and observation discrepancies were mainly due
to the emission inventories.

In our study, a relatively detailed emission inventory of air
pollutants in Beijing was established. The base-year of this emission
inventory is 2002. It was developed by the bottom-up approach thus
there were large uncertainties in the emission inventory, especially
in PMyp inventory. The emission data was obtained from the envi-
ronmental protection administrations of Beijing. The collected
emission data in Beijing is available at a municipal level, which
includes 16 municipalities. The major pollution sources included in
the inventory are industrial, residential, transportation, agriculture
and the fugitive emissions. The raw information in the inventory
includes 7 species: sulfur dioxide (SO;), nitrogen oxides (NOx), total
suspended particulates (TSP), particulate matter with an aero-
dynamic diameter less than 10 microns (PMyg), carbon monoxide
(CO), ammonia (NH3), and volatile organic compounds (VOCs).

Given close analysis, we found that fugitive PMyg emissions
(including fugitive industrial emissions, road dust emissions,
construction emissions, bare soil emissions, stockpile emissions)
account for the major part of the PM1g emissions (75%). Among the
total fugitive PMjp emissions, road dust emission sources,
construction emission sources, fugitive industrial emission sources
account for 54%, 24% and 15%, respectively. In practical work, fugi-
tive PMjo emissions are often hard to measure. Emissions of air
pollutants from fugitive emission sources are calculated using
empirical models, which are essentially regressions of measured
emissions on variables suspected to be important in determining
emissions (Venkatram, 2000). Empirical formulas in the AP-42
document published by the USEPA (AP-42, fifth edition) was applied
in our work to calculate fugitive emissions in Beijing. Considering
the differences of soil types between China and US, some parame-
ters of the formulas have been modified. For example, field exper-
iments were conducted to get some parameters such as the road
surface silt loading; some parameters like soil wind erosion index
were localized referring to reports by Beijing municipal research
institute of environmental protection (2003). For lacking of
enough mechanistic bases, the empirical method to obtain the
fugitive emissions brings large uncertainties in the PMp emission
inventory.

3. Methodology
3.1. MM5-CMAQ model description
The NCAR/Penn State Mesoscale Model (MM5) (Grell et al.,

1994) was used to generate the meteorological fields for CMAQ
(Byun and Ching, 1999). The CMAQ model is a sophisticated
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