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a b s t r a c t

Diagnosis and treatment of dilated cardiomyopathy (DCM) is challenging due to a large variety of causes
and disease stages. Computational models of cardiac electrophysiology (EP) can be used to improve the
assessment and prognosis of DCM, plan therapies and predict their outcome, but require personalization.
In this work, we present a data-driven approach to estimate the electrical diffusivity parameter of an EP
model from standard 12-lead electrocardiograms (ECG). An efficient forward model based on a mono-
domain, phenomenological Lattice-Boltzmann model of cardiac EP, and a boundary element-based map-
ping of potentials to the body surface is employed. The electrical diffusivity of myocardium, left ventricle
and right ventricle endocardium is then estimated using polynomial regression which takes as input the
QRS duration and electrical axis. After validating the forward model, we computed 9500 EP simulations
on 19 different DCM patients in just under three seconds each to learn the regression model. Using this
database, we quantify the intrinsic uncertainty of electrical diffusion for given ECG features and show in a
leave-one-patient-out cross-validation that the regression method is able to predict myocardium diffu-
sion within the uncertainty range. Finally, our approach is tested on the 19 cases using their clinical
ECG. 84% of them could be personalized using our method, yielding mean prediction errors of 18.7 ms
for the QRS duration and 6.5� for the electrical axis, both values being within clinical acceptability. By
providing an estimate of diffusion parameters from readily available clinical data, our data-driven
approach could therefore constitute a first calibration step toward a more complete personalization of
cardiac EP.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Clinical rationale

With around 17.3 million deaths per year (Mendis et al., 2011),
the global burden of cardiovascular diseases remains high and
causes a significant social and economic impact. According to
recent estimates, about 2% of adults in Europe (McMurray et al.,
2012) and 2.4% of adults in the US (Roger et al., 2012) suffer from
heart failure alone, with the prevalence rising to more than 10%
among persons 70 years of age or older. One of the most common

causes of heart failure is dilated cardiomyopathy (DCM), a condi-
tion with weakened and enlarged ventricles and atria, leading to
an ineffective pump function that can directly and indirectly affect
the lungs, liver, and other organ systems. The prevalence of DCM
amounts to around 0.9% of adults in the US (Ferri, 2013), and the
disease is the leading indication for heart transplantation in youn-
ger adults. Due to a large variety of individual causes and disease
stages, diagnosis and treatment of DCM remains an open challenge.

Cardiac arrhythmia, i.e. irregular electrical activity of the heart,
occurs frequently in heart failure patients, particularly in those
with DCM (McMurray et al., 2012). But also beyond DCM, the prev-
alence of cardiac rhythm disorders has increased significantly in
the last decade following an improvement in patient care
(Marcus et al., 2013). Depending on the kind of rhythm disorder,
which is commonly diagnosed using electrocardiography (ECG),
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the treatment of arrhythmia includes drug therapies, radio fre-
quency ablation and the implantation of artificial pacemakers
and cardioverter-defibrillators. Unfortunately, around 30% of
patients are non-responders to these invasive treatments, and in
up to 50% of the cases, recurrences are identified (Auricchio
et al., 2011).

As a result, tools for a more predictive assessment of cardiac
electrophysiology (EP) are needed. Computational assistance is
not only required for a superior patient management and diagnosis
but could also benefit therapy planning, outcome prediction and
intervention guidance. While improved risk stratification could
help avoiding unnecessary surgeries, the potential of optimizing
invasive procedures, for instance by choosing optimal electrode
locations, can potentially lead to an increased success rate and
fewer non-responders. For this purpose, computational models
can be employed to study and evaluate patient-specific electro-
physiology in silico.

1.2. Technical background: computational models of cardiac
electrophysiology

1.2.1. Models of cardiac action potential
A wide range of computational models of cardiac EP with differ-

ent biological scales and theoretical complexity has been proposed
since the seminal work of Hodgkin and Huxley (1952). Especially in
the last decade, the community has witnessed tremendous pro-
gress in modeling efforts (Clayton et al., 2011). Depending on their
level of detail, EP models can be classified into three groups: Bio-
physical, phenomenological and Eikonal models.

Biophysical cellular models capture cardiac electrophysiology
directly at cell level by describing biological phenomena responsi-
ble for myocyte depolarization and repolarization. More precisely,
ionic interactions within the cell and across the cell membrane
(ion channels) are considered (Noble, 1962; Luo and Rudy, 1991;
Noble et al., 1998; Ten Tusscher et al., 2004) and lead to complex
equations, commonly one per molecular process. Although it has
been shown that biophysical models can reproduce different elec-
trophysiological behaviors such as action potential restitution and
conduction velocity, the large amount of parameters limits their
usage in clinical applications due to the difficulty of personalization.

Cell models are then integrated at the organ level using reac-
tion–diffusion partial differential equations (PDEs). Two major cat-
egories can be distinguished. While mono-domain approaches
neglect interstitial effects and consider the myocardium as single
excitable tissue (Coudière and Pierre, 2006), bi-domain strategies
superimpose intra- and extra-cellular domains and take different
electrical properties into account (Bourgault et al., 2009). In the
absence of external stimuli, mono-domain models have been
shown to produce almost identical results as their bi-domain coun-
terparts (Potse et al., 2006).

Phenomonological models, historically the first models to be
proposed by FitzHugh (1961), work at a more macroscopic level.
Derived from experimental observations, the action potential is
described by a small number of parameters with direct influence
on its shape, disregarding the underlying ionic interactions (Aliev
and Panfilov, 1996; Mitchell and Schaeffer, 2003). Having only few
parameters with direct effect on measurable output facilitates
model personalization, and the lower computational cost when
compared to biophysical models offers a reasonable compromise
between modeling capacity and performance. The distinction
between mono-domain organ level integration schemes such as in
Aliev and Panfilov (1996), Fenton and Karma (1998), Mitchell and
Schaeffer (2003) and bi-domain approaches such as in Clayton
and Panfilov (2008) can be applied to phenomonological models,
too. Recent numerical advances based on Lattice-Boltzmann
methods (Rapaka et al., 2012) or Finite Element methods

(Talbot et al., 2013) exploit the massively parallel architecture of
modern graphics processing units, and allow near real-time
performance and user interaction.

Eikonal models (Franzone et al., 1990; Keener and Sneyd, 1998;
Sermesant et al., 2007) solely concentrate on the propagation of
the electrical wave to stimulate muscle activation. The formation
as well as the shape of the action potential in myocytes is
neglected. Governed only by the anisotropic speed of wave propa-
gation, the local time of wave arrival throughout the myocardium,
can be computed very efficiently using fast marching methods
(Sethian, 1999; Wallman et al., 2012). While it has become possible
to simulate wave reentry phenomena with Eikonal models (Pernod
et al., 2011), capturing other complex pathological conditions such
as arrhythmias, fibrillations or tachycardia is more challenging.

1.2.2. Model personalization
In order to apply the aforementioned EP models in clinical set-

tings, patient-specific physiology has to be captured by personal-
ized model parameters. Finding those is challenging in the
clinical workflow as the estimation from patient data implies solv-
ing an inverse problem. In this context, the forward model denotes
the computation of the electrical wave propagation from the heart
to the point of measurement (catheter electrode, body surface),
and the inverse model the back-projection of measurement data
onto the heart and the inference of model parameters (Gulrajani,
1998).

Inverse problem techniques are computationally demanding
because they comprise an optimization problem and therefore
require a large quantity of forward model runs (Modre et al.,
2002; Chinchapatnam et al., 2008; Dössel et al., 2011). Alterna-
tively, data-driven algorithms have been investigated to tackle
model personalization. Linking activation patterns with the result-
ing cardiac motion that can be observed in clinical images, Prakosa
et al. (2013) train a machine-learning algorithm to estimate depo-
larization times for cardiac segments from regional kinematic
descriptors. Jiang et al. (2011) apply statistical learning to map
body surface potentials onto the epicardium. Konukoglu et al.
(2011) derive a surrogate EP model based on polynomial chaos
theory to personalize an Eikonal model. Wallman et al. (2014) infer
tissue conduction properties using Bayesian inference to be
patient-specific. The advantage of these statistical methods is the
possibility to quantify uncertainty and to optimize the location of
measurements. Machine learning techniques could therefore con-
stitute efficient strategies for model personalization. However, a
sufficient sampling of the parameter space is needed for these
approaches to yield meaningful results. In this study, we aim to
achieve an estimation of model parameters only from sparse elec-
trocardiogram data.

1.2.3. Models of electrocardiogram and torso potential
From the perspective of data acquisition, endocardial mapping

(Sermesant et al., 2009; Relan et al., 2011) facilitates the parameter
estimation as it provides dense potential measurements but it is
pre-operatively often avoided as it is invasive. A non-invasive
alternative is to back-project electrical potentials measured at
the body surface in the form of electrocardiograms (ECG), to the
epicardium. Considering the ill-posedness of the parameter esti-
mation, the use of body surface mapping (BSM) has been investi-
gated (Dössel et al., 2011; Wang et al., 2011; Han et al., 2013). In
contrast to standard 12-lead ECG, BSM is however not yet widely
available as diagnostic modality.

If body surface ECG data is used for parameter estimation,
regardless of the number of traces, a model of electrical potentials
at the surface of the torso is needed. In terms of the forward model,
current approaches employ both Finite Element (FEM) and
Boundary Element (BEM) methods. While the former intrinsically
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