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a b s t r a c t

In the present study we applied a multivariate feature selection method based on the analysis of the sign
consistency of voxel weights across bagged linear Support Vector Machines (SVMs) with the aim of
detecting brain regions relevant for the discrimination of subjects with obsessive–compulsive disorder
(OCD, n ¼ 86) from healthy controls ðn ¼ 86Þ. Each participant underwent a structural magnetic reso-
nance imaging (sMRI) examination that was pre-processed in Statistical Parametric Mapping (SPM8)
using the standard pipeline of voxel-based morphometry (VBM) studies. Subsequently, we applied our
multivariate feature selection algorithm, which also included an L2 norm regularization to account for
the clustering nature of MRI data, and a transduction-based refinement to further control overfitting.
Our approach proved to be superior to two state-of-the-art feature selection methods (i.e., mass-univar-
iate t-Test selection and recursive feature elimination), since, following the application of transductive
refinement, we obtained a lower test error rate of the final classifier. Importantly, the regions identified
by our method have been previously reported to be altered in OCD patients in studies using traditional
brain morphometry methods. By contrast, the discrimination patterns obtained with the t-Test and the
recursive feature elimination approaches extended across fewer brain regions and included fewer voxels
per cluster. These findings suggest that the feature selection method presented here provides a more
comprehensive characterization of the disorder, thus yielding not only a superior identification of OCD
patients on the basis of their brain anatomy, but also a discrimination map that incorporates most of
the alterations previously described to be associated with the disorder.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Obsessive–compulsive disorder (OCD) is a chronic psychiatric
disorder with an approximate worldwide prevalence of 2% that
causes significant interference with familial, work and social func-
tioning (Karno et al., 1988). Prevailing neurobiological models of
OCD are based in part on quite solid neuroanatomical findings
accumulated over the course of the past years by means of the
analysis of structural magnetic resonance imaging (sMRI) data. In
particular, Voxel Based Morphometry (VBM) (Ashburner and Fris-
ton, 2000) has probably been the most widely used approach to

characterize brain structural abnormalities in OCD and other
psychiatric disorders (Radaelli et al., 2008). On the one hand,
VBM provides a common and largely automated preprocessing
framework for morphometry studies, thus facilitating the compar-
ison between results from different centers. On the other hand,
statistical inference in VBM studies is based on the principles of
the quite intuitive and well-known general linear model (GLM).
Such research has enabled the examination of previous neuroana-
tomical hypotheses relating to the disorders and the proposal of
new disease models with solid biological foundations, although
the results have been ill translated into clinical practice (Orrù
et al., 2012). Consequently, there has been an increasing interest
in applying other analysis strategies, such as machine learning
(ML), to describe between-group differences in terms of actual
discrimination between populations (Lemm et al., 2011).
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ML is a discipline devoted to the estimation of unknown vari-
ables on the basis of empirical observations (Vapnik, 1995). Due
to its multivariate nature, the particular application of ML methods
to the analysis of sMRI data in patients with mental disorders has
made it possible to characterize the brain alterations of such disor-
ders as spatially distributed patterns of interrelated alterations.
Likewise, ML methods have also made the characterization of brain
alterations possible at an individual level, as opposed to the group
level differences provided by other approaches (Orrù et al., 2012).
Both assets are extremely valuable for research in biological psy-
chiatry, which characteristically deals with subtle, distributed
brain structure alterations in the context of a lack of reliable bio-
markers for diagnosis, disease progression and treatment effective-
ness monitoring.

Nevertheless, the application of ML algorithms to sMRI data
needs to consider the dimensionality of each data point in relation
to the number of available data samples (typically, a difference be-
tween three and four orders of magnitude). Thus, in the best sce-
nario, one may have hundreds of samples, while each sMRI may
contain more than 105 voxels. This situation, where the number
of instances l is much smaller than the dimensionality of the input
space D, is known in ML as a small sample size problem. A small
sample size problem implies a high risk of overfitting, i.e., learning
models that perform extremely well predicting the training data
but very poorly with the test data not available at training time.
The classic ML tricks to overcome situations where l� D aim at
either pretending to effectively increase l or reducing D. A virtual
augment of l can be obtained by resampling methods such as boot-
strap (Efron, 1979) or bagging (Breiman, 1996). There are two main
classes of methods to reduce D, feature extraction (FE) and feature
selection (FS).

On the one hand, FE approaches generate a new (reduced) sub-
set of features based on the original ones, they usually apply a
transformation of the input variables in a reduced set by minimiz-
ing the information loss or maximizing the predictive capability of
these new features. A well known disadvantage of FE methods is
that the new set of variables losses interpretability, since it is rel-
atively hard to map back the outcome of the algorithm to the ori-
ginal space. Principal Component Analysis (PCA) (Pearson, 1901) is
perhaps the most broadly FE method. In fact, Mourão Miranda et al.
(2005) apply it to reduce the number of voxels in a brain-mapping
problem with fMRI data, although it has to include a post-process-
ing step based on a permutation test to remove irrelevant voxels
and, thus, to gain interpretability. The input dimension in a sMRI
is so large that indeed most papers presenting FS methods also per-
form a preprocessing FE step gathering higher level features from
groups of neighboring voxels. For instance, Bunea et al. (2011) gen-
erate a reduced subset of features based on the neuroimaging and
demographic information, whereas other works (see, for instance,
Varoquaux et al., 2012 or Wang et al., 2010) use features extracted
by representing groups of adjacent voxels with a measure over the
cluster as its mean value. The reduced sets of extracted features
still suffer from the curse of dimensionality, therefore the FE are
combined with other dimensionality reduction method; for in-
stance, Bunea et al. (2011) and Varoquaux et al. (2012) combine
the feature extraction stage with a bootstrap approach or Wang
et al. (2010) builds an ensemble of bagged SVM learners.

On the other hand, FS techniques assume that the information is
just in a subset of the input variables and tries to find it. State-of-
the-art FS techniques are usually classified in three groups: (1)
Filters, which are based on relevance measures resulting from sta-
tistical tests or Mutual Information estimators (Torkkola et al.,
2003); (2) wrapper approaches (Kohavi and John, 1997) or (3)
embedded methods, such as, the Recursive Feature Elimination
(RFE) method proposed by Guyon et al. (2002). A more recent trend
in ML proposes to introduce regularizations that lead to a FS in the

design of the actual classification or regression algorithm. Exam-
ples of these techniques are lasso regression (Tibshirani, 1994),
group lasso (Yuan and Lin, 2006), elastic networks (Zou and Hastie,
2005), etc.

Indeed, most of these FS tricks for coping with small sample size
situations have already been applied to neuroimaging data and, in
particular, to sMRI. Thus, for instance, Mitchell et al. (2004) analyze
the performance improvement provided by different relevance
measures during the classification of cognitive states, Costafreda
et al. (2009) use a FS step based on mass-univariate t-Tests fol-
lowed by an SVM classification of depressive patients versus
healthy controls, or De Martino et al. (2008) and Ecker et al.
(2010) apply the RFE method to map and classify fMRI spatial pat-
terns and to discriminate autistic subjects from healthy controls,
respectively. In this context, despite recent reports suggesting that
classification accuracy may only be increased by increasing sample
sizes (Chu et al., 2012), which is not always easy to achieve in stud-
ies with clinical populations, further improvements in FS methods
may not only lead to an overall improvement in classification accu-
racy, but also to a more valid and comprehensive characterization
of the brain regions relevant for disease characterization.

Recent works propose to embed the FS step within the classifi-
cation stage. Following this research line, the works of Yamashita
et al. (2008) or van Gerven et al. (2010) include regularization
terms based on L1 norms to arrive at models that end up using a
very reduced set of the input variables (in the order of the sample
size). However, the application of L1 regularization to raw neuro-
imaging data, would provide too sparse meaningless solutions
where a few isolated voxels making up the whole brain map. This
limitation can be overcome combining the L1 norm with a L2 one in
an elastic net fashion (Carroll et al., 2009; Ryali et al., 2010) or
including spatial regularizations (Cuingnet et al., 2011; Michel
et al., 2011) to force the selection of sets of spatially close voxels
with a significant size. However, the optimization involved in these
proposals results in a computational problem. In some cases these
optimizations have to be solved in a primal space with hundreds of
thousands of variables. In some other cases they result in very spe-
cific ad hoc optimization problems that cannot be solved with
standard toolboxes.

The fact that OCD is related to brain structural abnormalities re-
sults in that the majority of the voxels do not contain relevant
information for the discrimination of the disease. For this reason,
FS seems the most appropriate complement to tackle the discrim-
ination of the disease with ML. The advantage of using FS methods
is twofold. Firstly, by dramatically reducing the number of effective
voxels by removing the non-informative ones, it is possible to iden-
tify those areas that are relevant for the disease characterization.
Such a map would enable the interpretation of the outcome of
the ML algorithm by clinicians and neuroimaging experts (Parra-
do-Hernandez et al., 2012a). Secondly, by removing non-informa-
tive signals (i.e., noise), it is expected to increase classification
accuracy (Guyon and Elisseeff, 2003). Moreover, an FS method
working in the voxel space (without preprocessing FE based on a
priori established brain regions or clusters of voxels) would be able
to discover structural abnormalities at different levels of detail. In
addition, the set of selected voxels must be robust against overfit-
ting; i.e., the selection method should pick up those voxels relevant
for the discrimination between out-of-sample patients and healthy
subjects (Parrado-Hernandez et al., 2012b).

The present paper further develops a FS scheme built on the
starplots strategy proposed by Bi et al. (2003). The starplots
method selects, as relevant for the task at hand, those features
whose role in the final machine is robust to small, controlled
perturbations in the training set. In short, the starplots method be-
gins by training an ensemble of linear machines whose training
sets are obtained by undersampling the original dataset. An L1
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