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a b s t r a c t

This paper presents a method for capturing statistical variation of normal imaging phenotypes, with
emphasis on brain structure. The method aims to estimate the statistical variation of a normative set
of images from healthy individuals, and identify abnormalities as deviations from normality. A direct esti-
mation of the statistical variation of the entire volumetric image is challenged by the high-dimensionality
of images relative to smaller sample sizes. To overcome this limitation, we iteratively sample a large
number of lower dimensional subspaces that capture image characteristics ranging from fine and local-
ized to coarser and more global. Within each subspace, a ‘‘target-specific’’ feature selection strategy is
applied to further reduce the dimensionality, by considering only imaging characteristics present in a test
subject’s images. Marginal probability density functions of selected features are estimated through PCA
models, in conjunction with an ‘‘estimability’’ criterion that limits the dimensionality of estimated prob-
ability densities according to available sample size and underlying anatomy variation. A test sample is
iteratively projected to the subspaces of these marginals as determined by PCA models, and its trajectory
delineates potential abnormalities. The method is applied to segmentation of various brain lesion types,
and to simulated data on which superiority of the iterative method over straight PCA is demonstrated.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Voxel-based morphometry (VBM) type of analyses are being
increasingly adopted for characterizing neuroanatomical differ-
ences between brain images (Ashburner and Friston, 2000; Mech-
elli et al., 2005). VBM has emerged as an alternative to region of
interest (ROI) based approaches. Different brains are compared
on voxel-by-voxel basis after being spatially normalized to a com-
mon template space. Voxel-wise statistical tests are performed on
each individual voxel for a normal population, and voxels that dif-
fer from the normal population are flagged and grouped into clus-
ters reflecting pathology, over the entire group, albeit not
necessarily at the individual level. A fundamental limitation of this
kind of approaches is that it relies on voxel-by-voxel comparisons,
and cannot capture more complex imaging patterns.

Voxel-based approaches have also been used in supervised
frameworks for segmenting brain lesions. These methods use man-
ually-segmented images annotated by experts, and learn a predic-
tive model from positive and negative training samples obtained

from individual voxels with known class labels. Voxel intensities
(or values derived from intensities) from single or multiple image
channels are used as features that characterize each individual
voxel, and a classifier (e.g. kNN, SVM (Burges, 1998; Cortes and
Vapnik, 1995)) is trained on these feature vectors (Anbeek et al.,
2004; Lao et al., 2008).

Atlas-based methods have been proposed as a way of includ-
ing spatial context information in lesion segmentation (Prastawa
et al., 2004; Shiee et al., 2010; Van Leemput et al., 2001; Wu
et al., 2006). A statistical atlas provides the prior probability of
each voxel to belong to a particular healthy tissue type. In Pras-
tawa et al. (2004) the atlas is used for sampling voxels from each
healthy tissue type. A robust estimator is then used for estimat-
ing the probability density function (pdf) of the healthy brain
tissue intensity. Brain tumors are segmented as outliers of the
estimated pdf. Similarly, in Van Leemput et al. (2001) the param-
eters of a stochastic tissue intensity model for normal brain are
estimated, while simultaneously detecting lesions as voxels
that are not well explained by the model. An atlas is used for
prior classification of image voxels into tissue types. In both
approaches, tissue specific intensity models are used for estimat-
ing the normal variation, and the spatial context information is
independently used as a prior.
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In this paper, we propose a multi-variate pattern analysis meth-
od for segmenting abnormalities. Instead of analyzing voxels indi-
vidually or estimating intensity distributions of healthy tissue
types, we basically aim to learn the statistical variation of the
healthy brain anatomy in the high dimensional space, i.e. to esti-
mate the pdf of all image voxels, from a training database of normal
brain scans.1 Rather than classifying image voxels independently as
normal or abnormal, the proposed method detects patterns of abnor-
mality by projecting an image into the hypervolume of normals as
defined by statistical models learned from the training samples.
We do not make any assumption about the characteristics of the
abnormality, however we assume that normal anatomy follows spe-
cific patterns and certain aspects of its statistics can be estimated
from a number of representative examples. The method is not spe-
cific to a given type of pathology, and thus, it does not require train-
ing for many possible types of abnormalities, which is often not
practical or even possible, particularly when the pathology is vari-
able and/or unknown in advance.

An important challenge of multi-variate analysis on image data
is the problem of high-dimensionality and small sample size. For
example, a typical MRI scan of the brain includes several millions
of measurements on respective voxels. Moreover, the structure
and function of many organs, particularly of the brain and the
heart, are very complex and difficult to summarize with a small
number of variables extracted from such images. Finally, pathol-
ogy can cause even more complex and subtle changes in the
imaging characteristics, thereby rendering it extremely difficult
to train an algorithm to find such changes, without knowing in
advance what features to look for. Even though the complexity
of the problem would call for thousands of scans to be used as
training examples, typical imaging studies often offer just one
or two hundred scans for training, or even less. Learning algo-
rithms therefore are limited with respect to the complexity of im-
age patterns they can learn, and the precision with which they
can learn them and identify them in new images. We focus on
addressing the challenges of such direct estimation of statistical
variation.

A common approach to learning from an image database in-
volves some form of dimensionality reduction, such as principal
component analysis (PCA) or some sparse decomposition of the
training examples, so that a relatively small and manageable set
of ‘‘features’’ is extracted from the training data. These features
then define the feature space within which each image is pro-
jected, prior to building statistical models that estimate its char-
acteristics. If a number of normal brain MRI scans is available,
PCA can be used to approximate the statistical distribution of
these images, under Gaussianity assumptions. When a new image
is presented, its location within the PCA subspace is determined
via projection to the principal eigenvectors. Normality or abnor-
mality of the test image can be evaluated by calculating its
respective likelihood, given the PCA model of the training set.
Similarly, the pattern of abnormality can be estimated by project-
ing the test image to the subspace of normal brain images, as
determined by the PCA. However, the dimensionality of the PCA
space is bounded by the number of training samples. Conse-
quently, a PCA model of the whole brain obtained from a limited
number of training samples can only capture relatively global
patterns of variation in the data.

In order to overcome the small sample size limitation, building
upon prior work (Erus et al., 2010), we first propose to sample a
large number of lower dimensional subspaces, each of which is suf-
ficiently small relative to the underlying image variations and the

available sample size. In the experiments herein, each of these sub-
spaces represents image patches, albeit it does not necessarily have
to. The subspaces are derived in a multi-scale fashion, and capture
image characteristics ranging from fine and localized to coarser
and relatively more global. We impose conditions that allow the
statistical variations of these subspaces to be reliably estimated
from the available training data. The main premise here is that,
an imaging pattern that is consistent with a large number of
marginal pdfs, is likely to be consistent with the overall pdf,
which has not been explicitly estimated due to the high image
dimensionality.

We further reduce the dimensionality within each image patch
by applying an individualized feature selection strategy. Learning
methods generally try to find the features that best represent the
entire set of training examples and their variability. We propose
an alternative approach based on a ‘‘target specific’’ feature selec-
tion strategy. When the goal is to analyze a specific test image,
called the ‘‘target’’, not belonging to the training image database,
the optimal feature extraction and dimensionality reduction for
classification of the target image is not necessarily the one that is
optimal for the entire training set, but one that best learns the fea-
tures that are relevant for the specific target image. For example,
instead of attempting to learn a statistical model or classifier that
reflects all possible variations of normal brain anatomy, we only
need to learn the variations of the specific anatomical features
encountered in the target brain. Such target-specific learning im-
proves our ability to learn from a database of examples, as it fo-
cuses on the features that are present in the specific target being
analyzed. These features, of course, are different for different target
images. In our experiments, a smaller set of target-specific features
are selected within each image patch through an approach based
on wavelet thresholding (Donoho, 1995), since it is a method that
has been very successful in dimensionality reduction of images and
signals. However other sparse decompositions can be readily used
instead (Sjostrand et al., 2007). Typically, a small number of fea-
tures, or expansion coefficients, is necessary to construct the main
characteristics of a target image.

The validation experiments are applied on FLAIR (FLuid Attenu-
ation Inversion Recovery Magnetic Resonance Imaging)-MRI
images, for the segmentation of two types of abnormalities with
different signal and spatial characteristics: white matter lesions
and cortical infarcts. We evaluate the segmentation accuracy on
both simulated and real abnormalities. WMLs show up as hyperin-
tensities with respect to surrounding healthy white matter (WM)
tissues on FLAIR images. An infarct is generally the result of a
stroke that occurs when the blood supply to the brain is inter-
rupted, due to cerebrovascular disease (CVD). It consists of necro-
sis, i.e. a region of dead brain tissue, typically surrounded by a rim
of tissue that is not dead but not entirely healthy, either. Many
clinical studies investigating CVD require segmentation of the
necrosis (Barkhof, 2003). The accurate segmentation of these re-
gions is difficult as their intensity patterns are similar to the
adjoining cerebrospinal fluid (CSF).

The paper is organized as follows: Section 2 describes the pro-
posed method. The experimental results are given and discussed
in Section 3. Section 4 summarizes and concludes with additional
discussions and future perspectives.

2. Method

Consider medical images of a normative population coregis-
tered to a common domain X as realizations of a d-dimensional
random vector I, consisting of d scalar random variables
½x1; x2; . . . ; xd� corresponding to intensities of the image voxels.
The joint pdf of I,

1 Through the text the term ‘‘normal scan’’ refers to a brain image from a healthy
subject without abnormalities, unless otherwise stated.
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