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a b s t r a c t

Personalized tumor growth model is valuable in tumor staging and therapy planning. In this paper, we
present a patient specific tumor growth model based on longitudinal multimodal imaging data including
dual-phase CT and FDG-PET. The proposed Reaction–Advection–Diffusion model is capable of integrating
cancerous cell proliferation, infiltration, metabolic rate and extracellular matrix biomechanical response.
To bridge the model with multimodal imaging data, we introduce Intracellular Volume Fraction (ICVF)
measured from dual-phase CT and Standardized Uptake Value (SUV) measured from FDG-PET into the
model. The patient specific model parameters are estimated by fitting the model to the observation, which
leads to an inverse problem formalized as a coupled Partial Differential Equations (PDE)-constrained
optimization problem. The optimality system is derived and solved by the Finite Difference Method.
The model was evaluated by comparing the predicted tumors with the observed tumors in terms of
average surface distance (ASD), root mean square difference (RMSD) of the ICVF map, average ICVF
difference (AICVFD) of tumor surface and tumor relative volume difference (RVD) on six patients with
pathologically confirmed pancreatic neuroendocrine tumors. The ASD between the predicted tumor and
the reference tumor was 2.4 ± 0.5 mm, the RMSD was 4.3 ± 0.4%, the AICVFD was 2.6 ± 0.6%, and the
RVD was 7.7 ± 1.3%.

Published by Elsevier B.V.

1. Introduction

Quantitatively characterizing the tumor spatial–temporal
progression is valuable in staging tumor and designing optimal
treatment strategies. In clinical practice, due to the lack of the
characterization of the spatially heterogeneous pattern of the
cancer progression, a conservative therapy is usually adopted by
treating a margin of normal-appearing tissue surrounding the
tumor as part of the tumor. This conservative approach necessities
a better understanding of the spatial–temporal progression of the
tumor.

Tumor growth not only relies on the properties of cancer cells,
but also depends on dynamic interactions among cancer cells, and
between cells and their constantly changing microenvironment.
The complexity of the cancer system motivates the study of the
tumor growth using mathematical models (Swanson et al., 2000;
Clatz et al., 2005; Hogea et al., 2008).

Cancer modeling can be classified into four scales: atomic,
molecular, microscopic, and macroscopic (Deisboeck et al., 2011).
Atomic scale modeling studies the structure and dynamic proper-
ties of proteins, peptides, and lipids, as well as their dependency
on the features of the environment using molecular dynamics.
Molecular scale modeling studies average properties of a popula-
tion of proteins, peptides, and lipids. Microscopic scale, i.e. tissue
or multicell, studies cell–cell and cell–microenvironment interac-
tions. Macroscopic scale studies dynamics of the gross tumor
behavior including morphology, shape, extent of vascularization,
and invasion, which are observable by clinical imaging data. Tumor
modeling requires the knowledge of the underlying tumor physio-
logical parameters. Clinical imaging data offers the benefit of
non-invasive, in vivo and timely measurement of these parameters.
In this paper, we focus on the image-driven tumor modeling on the
macroscopic scale.

In the image-driven tumor modeling field, Swanson et al. (2000)
assumed an infiltrative growth of the tumor cells, while consider-
ing differences in cell diffusion in white and gray matter. Clatz
et al. (2005) modeled locally anisotropic migration patterns by
integrating information from diffusion tensor images (DTI). Hogea
et al. (2008) included the mechanical properties of the lesion on
surrounding structures to model mass effect.
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In this paper, we not only consider mass effect, but also the cell
metabolic rate. To incorporate cell metabolism into the tumor
growth modeling, we combine the energy conservation law
presented in West et al. (2001) with cell proliferation law (Swanson
et al., 2000). As pointed by West et al. (2001), ontogenetic develop-
ment is fuelled by metabolism and occurs primarily by cell division.
The incoming metabolic energy is allocated to two parts: one part
for the maintenance of the existing cells and the other part for
the creation of new cells. This work was further extended by
Herman et al. to study the relationship between tumor vasculariza-
tion and growth (Herman et al., 2011). FDG-PET (2-[18F] Fluoro-2-
deoxyglucose positron emission tomography) is widely used in
oncology to find regions in the body which are more active and
need more energy, which motivates us to use FDG-PET to measure
metabolic rate and incorporate it into the tumor growth modeling.
Tracer kinetic modeling is a formal way to calculate glucose meta-
bolic rate (Huang et al., 1980); however, this modeling approach
usually requires taking series of blood samples from the studied
subject to give the time course of the tracer delivery and requires
measuring the dynamics of the radiolabel in local tissues. Standard-
ized Uptake Value (SUV) is a semi-quantitative measurement of the
metabolic rate and does not need dynamic blood sampling and PET
scanning, therefore is suitable for routine clinical use. In this paper,
we present the quantitative relation between both glucose meta-
bolic rate and SUV, and the proliferation rate of the model.

Anatomical modality imaging data such as CT and MRI can be
used to monitor the progress of the tumor boundary, which moti-
vates the studies (Swanson et al., 2000; Clatz et al., 2005; Hogea
et al., 2008) on using tumor boundary as the biomarker to estimate
model parameters by comparing the predicted tumor boundary
with the measured boundary. However, tumor boundary only pro-
vides quite limited tumor physiological information and in some
cases cannot really reflect the growth of the tumor. For instance,
the cancerous cell proliferation might not be reflected in the tumor
boundary progression, which motivates us to find a way to extract
the underlying physiological parameter related to the cell number.
In this paper, we introduce Intracellular Volume Fraction (ICVF)
into tumor growth modeling and present the principle and method
to estimate ICVF using dual-phase CT.

In this paper, we focus on integrating FDG-PET and CT into tu-
mor modeling. Our work is based on the extension of a Reaction–
Diffusion model (Swanson et al., 2000). The Reaction–Diffusion
model plays a fundamental role in modeling spatial–temporal
dynamics in system biology. The Reaction–Diffusion model de-
scribes the change of the cell density or population. However, (1)
the Reaction–Diffusion model does not incorporate cell metabolic
rate and (2) due to the difficulty to calculate the cell number, the
prediction of the Reaction–Diffusion model, i.e., the cell number
has to be converted to the front progression in order to connect
the model with the clinical observation (tumor boundary). In this
paper, we (1) develop a Reaction–Diffusion model enabling the
incorporation of the cell metabolic rate and (2) present a method
to calculate ICVF using dual-phase CT. As a result, the model pre-
diction can be directly related to clinical imaging data.

The proposed model is formalized as a coupled PDE system
(forward problem). The patient specific parameters (control
variables) are estimated by fitting the model prediction to the
observed tumor leading to a coupled PDE-constrained optimization
problem (an inverse problem). To obtain realistic solution,
Tikhonov regularization was introduced to regularize the solution.
The optimality system was derived and solved by the Finite
Difference Method (FDM).

The proposed model was evaluated on pancreatic neuroendo-
crine tumors. A dedicated protocol was developed to accumulate
longitudinal CT and FDG-PET of untreated pancreatic tumors. The
only work on the pancreatic tumor modeling that we are aware of

is (Haeno et al., 2012), in which the authors used a compartment
model to divide the cell population into three subpopulations:
primary tumor cells, metastasis-enabled cells and metastasized
cells. The migration rate between subpopulations and the growth
rate and death rate within each subpopulation were estimated
based on autopsy data. In this paper, we focus on the way to
combine routine clinical multimodal images to study the growth
of the primary solid tumor.

2. Material and methods

In this section, we first present the whole framework of the
modeling and evaluation; second, derive a Reaction–Advection–
Diffusion model incorporated with cell metabolic rate and mass
effect; third, describe how to adapt the model to associate it with
routine dual-phase CT and FDG-PET; finally, describe the process
for parameter estimation using longitudinal imaging data.

The flow chart of the proposed method is illustrated in Fig. 1.
The flow chart includes two parts: parameter estimation and eval-
uation. We introduce ICVF as the biomarker for both model param-
eter estimation and evaluation. In the parameter estimation part,
ICVF calculation takes longitudinal dual-phase CT images as inputs.
At each time point, ICVF is measured based on pre- and post-con-
trast CT images (see Section 2.2 for details). The measured ICVF at
the 1st follow-up is compared with the predicted ICVF growing
from the base line to find the optimal parameters g by minimizing
the deviation between the two ICVF maps. Once the model param-
eter g is estimated, the tumor grows from the 1st follow-up with
estimated model parameter. The predicted ICVF and the extracted
tumor surface are compared with the measured ICVF and tumor
surface at the 2nd follow-up for evaluation.

To use dual-phase CT to calculate ICVF, the non-rigid registra-
tion for the imaging data at one time point, i.e., between pre-
and post-contrast CT, needs to be performed. To incorporate PET
into the model, we also need to non-rigidly align the post-contrast
CT and PETCT, and then apply the transform to the PET. The non-
rigid registration method we used was the Free-Form Deformation
(FFD) based method in Rueckert et al. (1999). To align the longitu-
dinal data, we performed the rigid registration between longitudi-
nal post-contrast CT using an ITK implementation of an affine
transform-based registration (Yoo et al., 2002). For the tumor
segmentation, we used a Level Set segmentation implemented in
Malladi et al. (1995).

2.1. Derive the tumor growth model

According to the tumor logistical growth model presented in
Swanson et al. (2000), the number of the newly created cells within
unit time can be described by,

dN
dt
¼ qN 1� N

K

� �
ð1Þ

where N is the number of cells, a function of time t. q is spatial–
temporal invariant proliferation rate. This model describes that
the tumor grows exponentially at the beginning and then gradually
slows down as approaching the carrying capacity K.

As a tumor progresses, the parts with sufficient nutrients and
oxygen grow faster, and those suffering vascular inefficiencies will
develop into necrosis, suggesting a heterogeneous or spatial–
temporal varying proliferation function q(x, t). The metabolic
energy conservation law presented by West et al. (2001) quantita-
tively describes the relationship between the metabolic energy and
the ontogenetic growth, providing the theoretical foundation to
explore the heterogeneity of the proliferation rate. The energy
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