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c Institut National de l’Environnement Industriel et des Risques, INERIS, Verneuil en Halatte, France

a r t i c l e i n f o

Article history:
Received 31 January 2009
Received in revised form
22 June 2009
Accepted 24 June 2009

Keywords:
Particulate matter
Air quality
Statistical model
Neural network
Data assimilation
CTM

a b s t r a c t

Well documented adverse health effects of airborne particulate matter (PM) stimulate intensive research
aimed at understanding and forecasting its behaviour. Forecasting of PM levels is commonly performed
with either statistical or deterministic chemistry-transport models (CTM). In this study, we investigate
advantages of combining deterministic and statistical approaches for PM10 forecasting over Europe one
day ahead. The proposed procedure involves statistical postprocessing of deterministic forecasts by using
PM10 monitoring data. A series of experiments is performed using a state-of-the-art CTM (CHIMERE) and
statistical models based on linear regressions. It is found that performance of both CTM simulations and
‘‘pure’’ statistical models is inferior to that of the combined models. In particular, the root mean squared
error of the deterministic forecasts can be reduced, on the average, by up to 45 percent (specifically, from
12.8 to 6.9 mg/m3 at urban sites in summer) and the coefficient of determination can be almost doubled.
Importantly, it is found that the combined models for rural sites in summer and for urban and suburban
sites in both summer and winter are representative, on the average, not only for a given monitoring site
used for their training, but also of territories of similar type of environment (rural, suburban or urban)
within several hundreds of kilometers away.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Respirable particulate matter (PM) adversely affecting human
health (see, e.g., Pope, 2000; Moshammer and Neuberger, 2003;
Hauck et al., 2004) is commonly considered as one of the major
factors contributing to air pollution problems in urbanized regions.
In order to control PM levels, certain standards of PM concentra-
tions are defined in the legislation of many countries. In particular,
the Council Directive 2008/50/EC established target values for
annual and daily mean PM10 (particles below 10 mg/m3 in diameter)
concentrations in the EU. Measurements of PM10 are routinely
performed in Europe at several hundred measurement sites. PM10

levels are operatively forecasted either explicitly or as a part of
national air quality indices (EURAD Project, 2009; IRCEL-CELINE,
2009; PREV’AIR, 2009; UK Air Pollution Forecast, 2009) in order to
warn the population against potentially dangerous atmospheric
conditions.

PM10 forecasts (as well as forecasts of other major pollutants) can
be performed by means of either deterministic or statistical
methods. Deterministic forecasts (see, e.g., Honoré et al., 2008) are
elaborated by chemistry transport models (CTM), which attempt to
explicitly describe all major physico-chemical and meteorological
processes responsible for the evolution of atmospheric aerosol,
while statistical methods (Chaloulakou et al., 2003; Hooyberghs
et al., 2005; Perez and Reyes, 2006; Zolghadri and Cazaurang, 2006;
Slini et al., 2006; Stadlober et al., 2008; Hoi et al., 2009) use time
series of past measurements in order to define associations between
meteorological conditions and PM10 concentration. A major advan-
tage of CTM based forecasts is an uniform spatial coverage, while
statistical models are best representative of only a given measure-
ments site. On the other hand, insufficient knowledge of pollutant
sources and inaccuracies in description of physico-chemical
processes can lead to rather strong biases in CTM results (Vautard
et al., 2007; Stern et al., 2008).

The goal of this study is to investigate the prospects of the
combined use of deterministic and statistical methods for PM10

forecasting. An idea of such a combination is to use a statistical
model in order to correct predictions made by a deterministic
model. Basically, this is a classical procedure known in meteorology
(Glahn and Lowry, 1972) as Model Output Statistics (MOS). A similar
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procedure is a part of downscaling methods (Wilby and Wigley,
1997) aimed at improving weather forecasts at individual sites.
A common approach involves building a linear regression model
between a set of variables provided by a numerical model and an
observed variable; this regression is further used to correct the
numerical weather forecasts for a given site (e.g., Wilson and Valée,
2003; Taylor and Leslie, 2005). Here we analyze the potential of this
procedure in improving PM10 forecasts not only at individual
measurement sites, but also in locations where PM10 monitors are
absent.

Advantages of the combined use of deterministic and statistical
methods for air pollution forecasting have not yet been sufficiently
investigated. The closest analog of the procedure discussed in this
paper is the MOS method used by Honoré et al. (2008) for fore-
casting of daily maximums of ozone concentration. They used
deterministic ozone forecasts and predicted air temperature as
input variables to linear regression models predicting errors of
deterministic ozone forecasts at individual sites. The predicted
errors were then spatially interpolated. This procedure has been
shown to significantly improve forecasts for episodes with high
ozone concentration (>180 mg/m3) and is now operational within
the PREV’AIR air pollution forecasting system (Rouil et al., 2009). A
similar idea has recently been employed by Denby et al. (2008) in
order to improve a simulated spatial distribution of exceedances of
threshold values (50 mg/m3) defined by European legislation for
daily PM10 concentrations. Specifically, they built a linear regres-
sion of daily mean simulated concentrations with measured values.
A regression model was created for each day and for the whole
domain (rather than for individual sites) and did not involve any
meteorological parameters. Note that the problem addressed by
Denby et al. (2008), contrary to the problem of forecasting, permits
the use of measurements for the same day for which the concen-
tration field is created.

Although in the framework of this study we performed exper-
iments with both linear and nonlinear (neural network based)
statistical models, only results obtained with classical linear
regressions are reported in this paper. This restriction is mainly due
to the space limits but also partly due to the fact that, similar to
some earlier studies (e.g., Perez and Reyes, 2006), our experiments
with neural networks did not reveal any large difference between
the performances of PM10 forecasts carried out by linear and
nonlinear models.

The paper is organized as follows. Section 2 is devoted to
description of the proposed methodology and input data. In Section
3, we first evaluate our method for sites which were used for
creation of statistical models, and then we discuss the spatial
coverage of forecasts. Finally, the conclusions and outlook are
provided in Section 4.

2. Method and data description

2.1. Chemistry transport model CHIMERE and meteorological data

Modelling of gaseous and aerosol processes in the framework
of the CHIMERE chemistry transport model is described in detail
in several previous papers. In particular, most of the model’s
physics and gas-phase chemistry is described by Schmidt et al.
(2001). The aerosol module is described by Bessagnet et al. (2004,
2008). A detailed model description, a technical documentation
and the source codes of the version (V200709) used in this study
are available on the web (CHIMERE chemistry transport model,
2009). Here we mention only the model features essential for our
study.

The chemical scheme used in this study, MELCHIOR1, includes
more than 300 reactions of 80 species. Additionally, 7 aqueous and

4 heterogeneous reactions are taken into account. For the aerosol
density distribution function, a sectional representation (Gelbard
and Seinfeld, 1980) is used. All particles in section l are assumed to
have the same chemical composition and are characterized by their
mean diameter dl. Eight bins from 10 nm to 10 mm are defined
following a geometrical progression. The equilibrium concentration
of semi-volatile inorganic species (sulfate, nitrate, chlorine,
ammonium) and water content of particles is calculated using the
ISORROPIA thermodynamic model (Nenes et al., 1998). Secondary
organic aerosols (SOA) are assumed to be formed from biogenic
(terpenes) and aromatic precursor VOC (aromatics, high chain
alkanes) following the scheme of Pun et al. (2006), as described in
the Bessagnet et al. (2008). This scheme follows the classical ‘‘two
product mechanism’’ (Odum et al., 1996). A general evaluation of
this mechanisms over a European domain is not possible due to
lack of suitable data (Bessagnet et al., 2008), but campaign data
often showed a strong underestimation of SOA simulated with this
type of mechanism pointing to yet unknown SOA formation
processes (Volkamer et al., 2006).

Anthropogenic emissions of aerosols and gaseous species are
taken from the EMEP database (Vestreng et al., 2005). The model
also takes into account resuspension of small particles, dry depo-
sition and wet scavenging of both gases and aerosols and sea salt
aerosol formation.

In this study we use a spatial domain which covers most of
Western and Central Europe with a horizontal resolution of
0.5� � 0.5� and includes 3082 grid cells. The model runs are per-
formed with 8 layers defined using a hybrid (s, p) scheme; the top
of the upper layer being fixed at 500 hPa pressure level. The model
was run continuously (that is, without any external re-initializa-
tion) for the period of four complete years from 2003 to 2006.

CHIMERE is forced by meteorological data simulated off-line
with the MM5 V3 mesoscale model. MM5 is initialized with the GFS
operational analysis. The same data are used for creation of
statistical models and postprocessing of deterministic forecasts. As
in Hooyberghs et al. (2005), only analyzed meteorological data
(D� 1) are used to evaluate our statistical forecasting model. Thus,
strictly speaking, the results presented in this paper should be
considered as an upper limit for the expected performances of real
forecasts since no evaluation has been performed using meteoro-
logical forecasts for following days (from Dþ 0). Nevertheless,
Honoré et al. (2008) have shown that accuracy of PM10 and ozone
forecasts performed with the CHIMERE model degrades only
insignificantly when meteorological forecasts (from Dþ 0 to Dþ 2)
are used instead of operational analysis (D� 1).

2.2. Statistical models

We use statistical regression models which assume a certain
functional relationship between a forecasted quantity and several
predictors. In the linear case considered in this paper, our models
are formulated as follows:

PM10ðDþ 1Þ ¼ PMobs
10 þ

Xn

i¼1

pi
�
xi � xi

�
þ 3; (1)

where PM10(Dþ 1) is the 24 h average concentration of PM10 for
the day following the current day D, x is a vector of predictors
which are specified below, pi are the regression coefficients and n is
the number of predictors, PM10

obs is the observed concentration
(24 h average of the present day), and 3 is the forecast error. The
over bar depicts the averages of the corresponding values over the
training subset (see Section 2.4) of the data. Linear regressions were
fitted to observations by means of the standard SVD (Singular Value
Decomposition) method (Press et al., 1992).
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