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a b s t r a c t

Standard evaluations of air quality models rely heavily on a direct comparison of monitoring data
matched with the model output for the grid cell containing the monitor’s location. While such tech-
niques may be adequate for some applications, conclusions are limited by such factors as the sparseness
of the available observations (limiting the number of grid cells at which the model can be evaluated) and
the incommensurability between volume-averages and pointwise observations. We examine several sets
of simulations to illustrate the effect of incommensurability in a variety of cases distinguished by the type
and extent of spatial correlation present. Block kriging, a statistical method which can be used to address
the issue, is then demonstrated using the simulations. Lastly, we apply this method to actual data and
discuss the practical importance of understanding the impact of spatial correlation structure and
incommensurability.

Published by Elsevier Ltd.

1. Introduction

The performance of an air quality model is typically evaluated
against actual measurements of the pollutant in question from
monitoring networks. Such models treat the region as a large grid,
giving output for each cell, so that the analyst must determine how
to make the comparison. In the most common situation, the
observed value from each monitor is matched with the value for the
grid cell in which the monitor is located. The resulting paired data
are used to evaluate the performance of the model, both visually,
using such graphical displays as scatterplots and spatial plots, and
numerically, using various performance metrics such as bias and
root mean squared error. Examples of comprehensive air quality
model evaluations which utilize this approach include Eder et al.
(2006), Eder and Yu (2006), and Appel et al. (2007).

For example, consider observed and modeled maximum 8 h
ozone values in the northeastern United States on June 14, 2001.
Fig. 1(a) shows the observations recorded at 124 air monitoring
stations in the region in parts per billion (ppb). Output from
a Community Multiscale Air Quality model (Byun and Schere, 2006)
simulation for the same day is pictured in Fig. 1(b). This model run
utilizes grid cells with each side of length 12 km. (Henceforth, we
refer to grid cells by their side length, e.g. ‘‘12 km grid cell’’, ‘‘36 km
grid cell’’). As with many such models, the value for a grid cell
represents the volume-average for the layer of the atmosphere
closest to the earth’s surface over the extent of the grid cell. A

scatterplot and summary statistics of the sort often used in tradi-
tional evaluation approaches are shown in Fig. 2. A spatial plot of
the differences between the model-monitor pairs is given in Fig. 3.

Figs. 1–3 are sufficient to form a general picture of model
performance. An examination of Figs. 2 and 3 reveals that, for this
particular day, the model underpredicts maximum 8 h ozone at
more monitoring sites than it overpredicts. Fig. 3 shows that while
underprediction seems to be an issue along the Canadian border,
we have a mix of overprediction and underprediction in other
areas, particularly for coastal sites.

While these figures are helpful in understanding how the model
output compares with the observations, none of them is sufficient
for a detailed assessment of model performance. For instance,
model metrics (such as those shown in Fig. 2) can only be calculated
for grid cells in which we have monitors, and this means that the
model metrics may overly reflect model performance in areas with
large numbers of monitors. These might most often be urban areas
or regions which have been pinpointed for further study due to
a perceived greater likelihood of problems. None of these plots
allows assessment of the model’s performance at unmonitored
locations. Also, the effect of measurement error or other sources of
fine-scale variability cannot be adequately considered. Lastly, to
better interpret Fig. 2, it would be helpful to understand to what
extent the differences between model-simulated values and
observed values may be due to the inherent differences between
point measurements and volume-averages.

The problem of comparing grid averages and point measure-
ments is usually termed ‘‘incommensurability’’ in the atmospheric
science literature. Statisticians refer to this same issue as one of
‘‘change of support’’; the issue and the underlying mathematics are
discussed more thoroughly by Gelfand et al. (2001), while Gotway
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and Young (2002) give an extensive review of statistical methods
for combining data with different spatial supports proposed for
a variety of scientific applications. Although in the context of air
quality modeling most evaluations have not considered this issue in

detail, some authors have considered the problem and developed
statistical methods for addressing it. The papers by Fuentes et al.
(2003), Fuentes and Raftery (2005), Swall and Davis (2006), and
Davis and Swall (2006) present sophisticated statistical models for
various applications, all of which address the incommensurability
issue and are able to estimate pollutant levels for grid cells in which
no observations lie. Even so, since there are no consistently avail-
able, regionally comprehensive sources of observational data at
heights beyond that of the typical monitoring station, each of these
techniques treat the model output as areal, rather than volume,
averages, and work herein follows suit.

In this paper, we discuss these issues from an applied statistical
perspective. We introduce simulated datasets to explore the impact
of various spatial correlation structures on common model evalua-
tion tools. Using these simulated cases, we illustrate the benefit of
the ‘‘block kriging’’ technique, which uses the observations and the
spatial correlation among them to estimate the levels of a pollutant
at all of the grid cells, whether or not they contain monitors. This
technique has the advantage of being relatively easy to implement in
statistical software packages and of requiring relatively few
assumptions, compared with some of the more complex approaches
developed by the above authors. We compare and contrast this
technique with traditional, point-based kriging techniques. Lastly,
we apply these ideas to selected real-life cases and demonstrate
their utility as part of a focused model assessment strategy.

2. Simulations

In this section, we make use of two sets of simulated spatial
fields to demonstrate the potential impact of incommensurability
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Fig. 1. Observed and modeled maximum 8 h ozone (2001-06-14).
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Fig. 2. Modeled vs. observed maximum 8 h ozone (2001-06-14).
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Fig. 3. Differences (modeled� observed) in maximum 8 h ozone (2001-06-14).
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Fig. 4. Correlograms for long-range and short-range simulations.
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