
Ad Hoc Networks 35 (2015) 37–50

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

An empirical study on implementing highly reliable stream

computing systems with private cloud

Yaxiao Liu∗, Weidong Liu, Jiaxing Song, Huan He

Department of Computer Science and Technology, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua

University, Beijing, China

a r t i c l e i n f o

Article history:

Received 8 December 2014

Revised 5 June 2015

Accepted 13 July 2015

Available online 26 July 2015

Keywords:

Stream computing

Cloud

Reliability

Banking system

a b s t r a c t

Stream computing systems are designed for high frequency data. Such systems can deal with

billions of transactions per day in real cases. Cloud technology can support distributed stream

computing systems by its elastic and fault tolerant capabilities. In a real deployment environ-

ment, such as the pre-treatment system in Chinese top banks, the reliability based on user ex-

perience is key metrics for performance. Although many significant works have been proposed

in the literature, they have some limitations such as less of architectural focus or difficult to

implement in complex projects. This paper describes the reliability issue which is caused by

the service downgrade in cloud. We use novel reliability analysis techniques, queuing the-

ory, and software rejuvenation management techniques to build a framework for supporting

stream data with low latency and fault tolerance. A real streaming system from a top bank is

studied to provide the supporting data. Operational parameters such as rejuvenation window

and time-out parameter are identified as key parameters for the design of a distributed stream

processing system. An algorithm for reliability optimization, monitoring and forecast is also

introduced. The paper also compares the improved result with original issues, which saved

millions of money and reputations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Stream systems are designed to support continuous on-

line data processing [1]. Many stream computing systems are

designed to deal with the velocity characteristic of big data

[2], which often requires stream systems to label, extract or

generate events from original data. Since the data stream is

continuous, the reliability of stream processing system will

impact the quality of data outputs significantly.

The cloud computing technology can provide elastic sup-

port to stream processing systems by helping them to handle

data volume fluctuations. The fast rejuvenation of cloud ser-

vices can also provide fault tolerant support.

∗ Corresponding author. Tel.: +8613910752612.

E-mail addresses: rootliu@gmail.com (Y. Liu), liuwd@tsinghua.edu.cn

(W. Liu), jxsong@tsinghua.edu.cn (J. Song), heh906@gmail.com (H. He).

In some real cases, we find that operational parameters

also play an important role in stream management. For ex-

ample, if a distributed system used software rejuvenation for

fault tolerant, the system might cause queue overflow be-

fore the completion of rejuvenation in cloud. We also observe

some cases of reliability downgrade caused by cloud system

hardware failure. Even if the stream system is distributed in

different virtual server zones, the unexpected queue over-

flow would also be encountered. The unexpected reliability

in stream systems would cause big loss in business cases. We

decide to solve the challenge by improving reliability of cloud

based stream systems from an architectural view.

In most cases, cloud service providers offer service-level

agreements (SLAs) based on the ‘availability’ of cloud ser-

vices [3]. ‘Availability’ means the ‘up’ time of single cloud

services regardless user’s experience. For example, a cloud

based load balancing services may be blocked by tremendous

data flow while all cloud virtual servers are ‘up’. From cloud

users’ view, the system is ‘unreliable’, while from the cloud

http://dx.doi.org/10.1016/j.adhoc.2015.07.009

1570-8705/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.adhoc.2015.07.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2015.07.009&domain=pdf
mailto:rootliu@gmail.com
mailto:liuwd@tsinghua.edu.cn
mailto:jxsong@tsinghua.edu.cn
mailto:heh906@gmail.com
http://dx.doi.org/10.1016/j.adhoc.2015.07.009


38 Y. Liu et al. / Ad Hoc Networks 35 (2015) 37–50

provider’s point of view, the services are ‘available’. Reliabil-

ity plays an important role here to link business case with

cloud performance.

We propose several architecture patterns in banking pri-

vate cloud [4]. The all patterns have specific needs in private

cloud. Stream systems could be considered as a special appli-

cation architecture pattern in cloud environment [1]. Our re-

search is part of a general study of managing different bank-

ing application architecture patterns in cloud.

Cloud availability/reliability [5–8] have been discussed in

many papers. The empirical study comes from the practice

for designing stream processing systems on private cloud for

a major bank in China. The stream system helps the bank to

deal with 3rd largest data processing requirements in China

with more than 200 million daily transactions.

In our previous work [4], we provide a methodology to

manage the cloud deployment pattern from business, cloud

and physical layer. In this paper, we focus on the stream as-

pects with the same layers. We analyze the mathematical

considerations to manage reliability. We also describe how

it is important to implement and manage the pre-treatment

processing stream in Chinese top banks. After careful study,

we provided 3 layers’ improvement solutions. The solutions

are proved to be successful by the deployment in production

environment. The deployment shows an improvement by

80% under the same issues. We provide both novel method-

ology and empirical data to support our contributions.

Our contributions include:

1. Define reliability as an architectural metric for cloud

based business services. The definition could be mea-

sured by the variance of reliability instead of calcula-

tion of many uncertain components.

2. Design a methodology to use above metrics to evaluate

cloud based services components. For complexity rea-

son, the study focuses on stream computing in cloud.

3. Resolve business challenges in high volume transac-

tions in Chinese top banks. The solution prevents ATM

processing system to lose of thousands of transactions,

which help the bank to maintain both revenue and

reputations.

This paper is organized as follows:

• In Section 2, we review the related work in this area and

introduce our contributions on architectural methodol-

ogy and the variance of reliability records.

• In Section 3, we describe the challenges from a banking

system and provide analysis based on the framework in

Section 2.

• In Section 4, we provide the optimization solutions and

results comparison.

• In Section 5, a prospection of our work is provided to-

gether with conclusions.

2. Related works and our contributions

2.1. Related works on cloud reliability

Cloud reliability could affect the stream system’s fault tol-

erance significantly. Some researches [5,6] showed concerns

about reliability and availability in cloud computing virtual

machines.

In a common on premise IT environment, IT availability is

defined as [5,9]:

Availability = Total Service Time − Downtime

Total Service Time
. (2.1)

Service reliability is defined as the possibility of a ser-

vice to perform its intended function under stated condition

[9]. Reliability cares about the system to provide acceptable

services, which means correct or accurate service delivered

within an acceptable time. If a system is up but takes long

time to perform, it is considered unreliable.

Another formula may express the idea more clearly [5]:

Reliability = Number of Successful Responses

Total Number of Responses
(2.2)

For a specified checkpoint, a service could obtain track

record of possibility of successful return from (2.2).

A cloud system contains multiple architectural layers,

such as bare metal servers, hypervisors and cloud manage-

ment software. The work by [8] identified that, in a large

cloud enabled datacenter (i.e. Microsoft cloud), the most fre-

quent failure events come from storage systems, especially

the storage system with multiple disks and RAID controllers.

From an application user’s view, the business transactions’

reliability may or may not be affected by the failure. It de-

pended on whether there was a high availability solution to

avoid the impact or the application could store its data in dif-

ferent storage systems.

Authors in [5] gave several guidelines for cloud deploy-

ment, such as deploying application nodes in different vir-

tual machines to share load and deploying virtual machines

in different hypervisor zones to avoid a single point failure.

They also discussed the latencies for different requirements.

Other research work [3,6,8] gave more details in practice on

using elastic capabilities to support stream fault tolerance.

One thing to be noted is that the ‘rapid elastic’ capabilities

can support both low latency and fault tolerance.

In our study, we find that we can use the variance of

reliability for a specific architectural pattern to manage reli-

ability instead of accurate variables which are more difficult

to obtain.

2.2. Related works on distributed stream processing

Recently, internet architecture and protocol optimization

is also a hot topic [12,18], it’s related to our paper as an en-

try point for distributed stream processing. The velocity at-

tribute of big data often requires a stream processing system

to provide high performance capabilities. Since data source

will send data packages continuously, stream systems have

to process data in limited time slot.

Streams can use parallel sub-streams to scale up the re-

quired time slots. Each sub stream will handle data labeling,

business event identification or word counting tasks simulta-

neously. Low latency design will ensure the processing not to

block future data flow. Fault tolerant design will help stream

system not to lose processing capabilities.

There are several systems designed to focus on large-scale

and low-latency stream computation, such as Apache S4 [10],

Twitter Storm [11], etc.

In the S4 system, the system keeps computation in-

side memory and partitions the data. It will only restart a



Download English Version:

https://daneshyari.com/en/article/444269

Download Persian Version:

https://daneshyari.com/article/444269

Daneshyari.com

https://daneshyari.com/en/article/444269
https://daneshyari.com/article/444269
https://daneshyari.com

