
Ad Hoc Networks 35 (2015) 105–115

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

Efficient subspace skyline query based on user preference using

MapReduce

Yuanyuan Li a,b, Zhiyang Li a,∗, Mianxiong Dong c, Wenyu Qu a, Changqing Ji d,
Junfeng Wu a,e

a School of Information Science and Technology, Dalian Maritime University, Dalian, China
b School of Software, Dalian Jiaotong University, Dalian, China
c Department of Information and Electronic Engineering, Muroran Institute of Technology, Hokkaido, Japan
d College of Physical Science and Technology, Dalian University, Dalian, China
e School of Information Engineering, Dalian Ocean University, Dalian, China

a r t i c l e i n f o

Article history:

Received 27 November 2014

Revised 15 June 2015

Accepted 10 July 2015

Available online 23 July 2015

Keywords:

Subspace skyline query

MapReduce

Pruning strategy

Grid

User preference

a b s t r a c t

Subspace skyline, as an important variant of skyline, has been widely applied for multiple-

criteria decisions, business planning. With the development of mobile internet, subspace sky-

line query in mobile distributed environments has recently attracted considerable attention.

However, efficiently obtaining the meaningful subset of skyline points in any subspace re-

mains a challenging task in the current mobile internet. For more and more mobile appli-

cations, subspace skyline query on mobile units is usually limited by big data and wireless

bandwidth. To address this issue, in this paper, we propose a system model that can support

subspace skyline query in mobile distributed environment. An efficient algorithm for process-

ing the Subspace Skyline Query using MapReduce (SSQ) is also presented which can obtain

the meaningful subset of points from the full set of skyline points in any subspace. The SSQ

algorithm divides a subspace skyline query into two processing phases: the preprocess phase

and the query phase. The preprocess phase includes the pruning process and constructing in-

dex process which is designed to reduce network delay and response time. Additionally, the

query phase provides two filtering methods, SQM-filtering and ε-filtering, to filter the skyline

points according to user preference and reduce network cost. Extensive experiments on real

and synthetic data are conducted and the experimental results indicate that our algorithm

is much efficient, meanwhile, the pruning strategy can further improve the efficiency of the

algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Skyline query has attracted an increasing amount of at-

tention over the past few years. Skyline query has been

widely applied in highly mobile distributed environments

for multiple-objective decisions. For example, a tourist may

∗ Corresponding author. Tel.: +86 13904265439.

E-mail address: lizy0205@dlmu.edu.cn (Z. Li).

search for a suitable hotel using a mobile phone network

when he/she arrives at the airport of a city.

Due to large-scale data and high processing costs, it is not

possible to compute the skyline points using terminals such

as mobile phones. The number of skyline points quickly in-

creases when the amount of data increases, particularly for

increasing trend of applications to deal with big data, for ex-

ample, big data on the social network. To address this prob-

lem, skyline computation in a distributed environment is the

best option. The authors in [1–4] proposed some approaches

for skyline processing in P2P network. These methods are

http://dx.doi.org/10.1016/j.adhoc.2015.07.006

1570-8705/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.adhoc.2015.07.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2015.07.006&domain=pdf
mailto:lizy0205@dlmu.edu.cn
http://dx.doi.org/10.1016/j.adhoc.2015.07.006


106 Y. Li et al. / Ad Hoc Networks 35 (2015) 105–115

Table 1

Dataset of hotels.

ID Price (RMB) Mileage (KM) Occupancy rate

p1 200 7 0.5

p2 200 3 0.6

p3 250 5 0.8

p4 500 3 0.7

p5 150 9 0.6

p6 200 9 0.5

p7 300 6 0.7

p8 500 5 0.8

p9 300 7 0.9

restricted to their own specific scenarios, such as overlay

network, and cannot be adapted for the aforementioned

scenario.

Furthermore, skyline query can be computationally ex-

pensive when it provides numerous candidate attributes. In

many applications, various users may focus their attention

on different subsets of the attributes according to their own

interests. Pei et al. and Tao [5,6] proposed efficient skyline

algorithms in subspaces that can retrieve the skylines in a

user-defined subset of attributes. MapReduce framework [7]

is a programming model for processing large datasets using

a distributed, parallel algorithm on a cluster. A considerable

amount of work has been conducted to migrate traditional

skyline algorithms to the MapReduce framework, such as

[8–11], but they cannot support subspace skyline query.

The subspace skyline query assumes every attribute to be

of equal importance, and the difference in the importance of

attributes is not considered. Bias to some attributes of greater

interest was considered in [12], in which the authors pro-

posed the Weighted Dominant Skyline. However, it is not

possible for users to provide the weight assignment with-

out any initial knowledge of the dataset. In this paper, we

only require users to provide the ranks of their attributes of

interest.

Taking Table 1 as an example, a dataset P = {p1, p2 ,…, p9}

about hotels contains 3 attributes: the price, the distance to

the airport (Mileage) and the occupancy rate. Assuming that

the attributes are of equal importance, there are 4 skyline

points in P: p1, p2, p5 and p6. However, in many cases, the

relative importance of attributes is often different. For exam-

ple, when a tourist is very tired, the distance to the airport

is crucial for him/her, and the other attributes are secondary.

In this case, although p5 and p6 are skyline points, the tourist

does not consider these points because the distance to the

airport is too far. In the above example, the interesting sub-

set of skyline points is {p1, p2}.

The aim of a skyline query is to help users manually make

a decision. As the size of the dataset increases, the size of sky-

line points becomes too large. There are many meaningless

skyline points to report, such as p5 and p6 in the above ex-

ample. In this paper, we present a new algorithm which we

call Subset Skyline Query or SSQ for short to return the mean-

ingful subset of subspace skyline points.

The major contributions of this work are summarized as

follows: (1) We present a system model for implementing

the skyline operator using MapReduce in any subspace, in

which the requirements of mobile internet and big data are

carefully considered. (2) We propose the algorithm of the

Subspace Skyline Query (SSQ) which can obtain the mean-

ingful subset skyline of skyline points. In the first phase, we

design a pruning strategy based on grid to reduce the net-

work delay and response time. It can effectively prune out

non-skyline points in advance. The constructing index pro-

cess is also used to support subspace skyline query. In the

second phase, we provide two filtering methods, called SQM-

filtering and ε-filtering, to filter the skyline points according

to user preference and reduce network communication. (3)

We conduct experiments on real and synthetic data. Experi-

mental evaluations show that SSQ can significantly improve

the efficiency of the subspace skyline query over big data.

The remainder of this paper is organized as follows. In

Section 2, we review the previous work related to skyline

query processing. Section 3 provides the useful preliminaries.

In Section 4, a system model is presented. Section 5 describes

the implementation of the SSQ algorithm in the parallel pro-

gramming framework of MapReduce. Section 6 presents ex-

perimental evaluations that demonstrate the efficiency of the

proposed algorithm. Finally, we conclude the paper with a

summary of our results in Section 7.

2. Related work

The skyline operator is useful for extracting interesting

data points from a dataset. Over the past decades, a consid-

erable number of research works have reported on the sky-

line operator and its variants. Börzsönyi et al. [13] first in-

troduced the skyline operator into the relational database

and proposed two algorithms: Block Nested Loop (BNL) and

Divide-and-Conquer (D&C). Chomicki et al. [14] presented

Sort-Filter-Skyline (SFS) as a variant of BNL, which can im-

mediately eliminate objects dominated by others in the

presorted dataset. The primary shortcoming of the above

algorithms is their dependence on memory capacity. Many

skyline query algorithms based on indexing have been pro-

posed, such as the nearest neighbor [15] and branch-and-

bound skyline [16] algorithms. Due to the dimension curse,

the size of the skyline is typically large. Consequently, many

variants of skylines have been proposed. Subspace skyline

query were first discussed by Pei et al. [5] and subsequently

elaborated in later works [6]. The key concept of a sub-

space skyline query is to implement the skyline operator in

the most interesting subset of all dimensions by the user.

Clearly, skyline query processing using the index structure

mentioned in [15,16] over all dimensions, such as R-tree, can-

not support subspace skyline query. All of these works as-

sumed that skyline query is performed on centralized sys-

tems. Unfortunately, a large amount of data can result in

low efficiency for skyline query performed in a centralized

setting.

Deviating from skyline query on centralized systems, sig-

nificant research effort has been devoted to implement-

ing the skyline operator in distributed environments. Sky-

line queries in P2P networks were discussed in [2–4], in

which unstructured peers or routing indexes were used to

identify relevant peers. Skyline processing has also been

studied in other distributed environments, such as web in-

formation systems [17–19]. They are not adapted for our

scenario because skyline processing over big data cannot be

performed in lightweight terminals. Motivated by the fact



Download English Version:

https://daneshyari.com/en/article/444274

Download Persian Version:

https://daneshyari.com/article/444274

Daneshyari.com

https://daneshyari.com/en/article/444274
https://daneshyari.com/article/444274
https://daneshyari.com

