
Journal of Molecular Graphics and Modelling 30 (2011) 82–89

Contents lists available at ScienceDirect

Journal of Molecular Graphics and Modelling

journa l homepage: www.e lsev ier .com/ locate /JMGM

Topical perspectives

Topical perspective on massive threading and parallelism

Robert M. Farber ∗

PNNL, P.O. Box 999, Richland, WA 99352, United States

a r t i c l e i n f o

Article history:
Received 9 May 2011
Received in revised form 15 June 2011
Accepted 17 June 2011
Available online 29 June 2011

Keywords:
CUDA
OpenCL
Parallel computing
GPU
Computer architecture

a b s t r a c t

Unquestionably computer architectures have undergone a recent and noteworthy paradigm shift that
now delivers multi- and many-core systems with tens to many thousands of concurrent hardware pro-
cessing elements per workstation or supercomputer node. GPGPU (General Purpose Graphics Processor
Unit) technology in particular has attracted significant attention as new software development capa-
bilities, namely CUDA (Compute Unified Device Architecture) and OpenCLTM, have made it possible for
students as well as small and large research organizations to achieve excellent speedup for many applica-
tions over more conventional computing architectures. The current scientific literature reflects this shift
with numerous examples of GPGPU applications that have achieved one, two, and in some special cases,
three-orders of magnitude increased computational performance through the use of massive threading to
exploit parallelism. Multi-core architectures are also evolving quickly to exploit both massive-threading
and massive-parallelism such as the 1.3 million threads Blue Waters supercomputer. The challenge con-
fronting scientists in planning future experimental and theoretical research efforts – be they individual
efforts with one computer or collaborative efforts proposing to use the largest supercomputers in the
world is how to capitalize on these new massively threaded computational architectures – especially as
not all computational problems will scale to massive parallelism. In particular, the costs associated with
restructuring software (and potentially redesigning algorithms) to exploit the parallelism of these multi-
and many-threaded machines must be considered along with application scalability and lifespan. This
perspective is an overview of the current state of threading and parallelize with some insight into the
future.

Published by Elsevier Inc.

1. Introduction and application

The trend to massive parallelism appears inescapable as current
high-end commodity processors, the workhorse for most scientific
computing applications, now support eight or more simultaneous
threads of execution per CPU socket. Most computational nodes and
scientific workstations contain several multi-core sockets, allow-
ing these systems to deliver sixteen or more concurrent threads
of execution. Multi-threaded applications that fully utilize this
hardware capability can deliver an order of magnitude increase
in computational throughput and corresponding decrease in time-
to-solution. A multi-threaded application breaks an application
into multiple pieces, or threads of execution, that run concur-
rently. Highly parallel applications can utilize multi-threading to
reduce application runtime by the number of threads, which can
be significant when using a newer architectures that supports
tens of thousands of parallel threads. Applications that use one or

∗ Corresponding author.
E-mail address: rmfarber@usa.net

very few threads of execution will likely not benefit from newer
architectures.1

A 10× performance increase is certainly significant, but it does
not necessarily represent a fundamental change for computation-
dependent science. Machines with this level of performance make
the computational workflow more interactive because computa-
tional tasks that previously took hours can finish in minutes and
extended computational tasks that previously took days can run
overnight.

Applications that deliver 100× or faster performance, as has
been demonstrated with General purpose graphics processors units
(GPGPU) technology across a broad spectrum of scientific prob-
lems, are disruptive and have the potential to fundamentally affect
scientific research by removing time-to-discovery barriers. Com-
putational tasks that previously would have required a year to

1 Some single-threaded distributed applications that use MPI or other distributed
software frameworks can use each computational core as a separate process. As
discussed later, this can be wasteful and begs the question if this is the most com-
putationally efficient mapping for many applications. It also precludes using other
architectures such as GPUs.

1093-3263/$ – see front matter. Published by Elsevier Inc.
doi:10.1016/j.jmgm.2011.06.007

dx.doi.org/10.1016/j.jmgm.2011.06.007
http://www.sciencedirect.com/science/journal/10933263
http://www.elsevier.com/locate/JMGM
mailto:rmfarber@usa.net
dx.doi.org/10.1016/j.jmgm.2011.06.007


R.M. Farber / Journal of Molecular Graphics and Modelling 30 (2011) 82–89 83

complete can finish in days. Better scientific insight becomes pos-
sible because researchers can work with more data and have the
ability to utilize more accurate, albeit more computationally expen-
sive, approximations and numerical methods.

Dennard’s scaling laws are at the heart of the industry-wide
change to multi-core processors [1,2]. Effectively they say that
power density (voltage×(current/area)) will remain constant even
as the number of transistors and their switching speed increases.
For that relationship to hold, voltages need to be reduced in pro-
portion to the linear dimensions of the transistor. Fabrication
techniques have reduced the size of transistors to the point that
manufacturers are no longer able to lower operating voltages suf-
ficiently to match the performance gains that can be achieved by
simply adding more computational cores to the processor chip. In
a competitive market, minor changes in processor performance do
not translate into increased sales for CPU manufacturers – hence
the proliferation of multi-core processors. In general, the industry
appears to believe this trend will continue and the number of cores
per processors will increase.

GPGPUs are an alternative commodity massively parallel archi-
tecture that is readily available and inexpensive. Since GPGPU
architectures evolved in the highly competitive visualization and
gaming market, they were designed from the beginning for mas-
sive parallelism. These architectures utilize replication of hardware
computational units called shaders to perform real-time visualiza-
tion tasks in a high-performance and scalable fashion. With the
advent of programmable shaders, which have been refined into
the current generation of general-purpose streaming multiproces-
sors, GPGPUs quickly evolved into very capable high performance
computational devices that can deliver a number of teraflops (1012

floating-point operations per second) of computational capabil-
ity for graphics and scientific problems. By varying the number
of the streaming multiprocessors, low-end devices with tens to
hundreds of hardware computational units can be offered at cur-
rent retail price points under a hundred dollars while high-end
devices containing many hundreds to a thousand hardware com-
putational units can be sold at current retail price points of a few
thousands of dollars. Since GPGPUs are small and can provide an
excellent flop per watt ratio, very large supercomputer clusters
are currently being built that utilize both multicore and GPGPU
technology. As of the November 2010 TOP500 list, the first and
third fastest supercomputers in the world (China’s Nebulae and
Tehane-1 hybrid CPU/GPU supercomputers) provide examples of
this developing trend. For the right applications, GPGPU technol-
ogy can provide orders of magnitude increased performance for
applications running on personal computers to leadership class
supercomputers.

Programmable in high-level languages such as the C language
with the NVIDIA CUDA (Compute Unified Development Architec-
ture) tools, OpenCLTM and other frameworks, GPGPUs have brought
massively parallel supercomputing to the worldwide masses.
Freely available software development kits (SDKs) have made pro-
gramming these devices accessible to anyone from teenagers to
large research efforts.

Currently, the NVIDIA CUDA SDK is the most popular. First
introduced in February 2007, CUDA is now taught at over 362 uni-
versities and academic institutions worldwide. NVIDIA estimates
there is already an installed base of over 250 million CUDA-
enabled GPGPUs [3]. OpenCL is a standard based alternative to
CUDA that provides multi-platform support for products from
most hardware vendors such as AMD, NVIDIA, IBM, Intel, Apple,
and others. The OpenCL standard is administered by the Khornos
group [4]. Source translators such as SWAN [5] can convert CUDA
programs to OpenCL. Other software such as MCUDA (CUDA to
Multi-core) [6] and Ocelot [7] allow CUDA applications to run
on multi-core processors [8], while OpenCL can directly compile

to run on multi-core processors. New data-parallel C++ exten-
sions such as Thrust [9] can dramatically simplify GPGPU code
development.

Performance, low cost, and power efficiency are three reasons to
consider GPGPU technology as legacy application software must be
modified or redesigned, which requires a software investment. The
benefit is potentially orders of magnitude increased performance
for both experimental and simulation based research. As the future
is clearly parallel, legacy projects that do not consider investing in
software and algorithm development to use one or more of these
hardware architectures risk stagnation and loss of competitiveness
[10].

The recent scientific and technical literature published during
the previous three years demonstrates a proliferation of GPGPU-
enabled applications and algorithms that deliver one to two orders
of magnitude speedup (10–100×) in performance over conven-
tional processors across a broad spectrum of algorithmic and
scientific application areas and additional speedups through the
use of multiple GPGPUs either within a workstation or joined
together within a computational cluster. This represents a remark-
able rate of adoption as CUDA in particular has only been around
for 4 years.

Summarizing the breadth and proliferation of applications that
map well to GPGPU technology is a challenge. Those applications
that achieve high performance are massively threaded so they can
fully utilize the many hundreds to thousands of simultaneous hard-
ware threads of execution that become available when one or
several GPGPU boards are plugged into a conventional processor
motherboard or are joined within a computational cluster.

The NVIDIA Community Showcase [3] provides a central repos-
itory that can be used to examine the broad applicability of
GPGPU technology to a wide-variety of computational problems
as reported in the peer-reviewed and technical literature. While
admittedly showcasing applications that perform well, the follow-
ing graph shows the top 100 fastest reported speedups (maximum
2600×, median 1350×, and minimum 100×) as of May 9, 2011
on NVIDIA CUDA GPUs. Other peer-review surveys reporting both
techniques utilized and speedups are appearing [11] (Fig. 1).

While successful GPU applications can deliver impressive per-
formance, it is important to note that GPGPU technology is good
for some but not all computational problems. Due to limitations
in the SIMD (Single Instruction Multiple Data) execution model
and per-thread resources, GPGPUs tend to have a “knife-edge”
performance envelope, which means it can be challenging to get
high-performance with these devices. Also, it is important to ver-
ify that the reported speedups represent realistic performance of
a multicore system as opposed to single-core performance. As has
been stressed by the Intel Throughput Computing Lab and Archi-
tectures Group, further scrutiny of reported results is needed to
ensure that equal effort was made to optimize both CPU and GPU
implementations [12].

Many authors report GPGPU performance based on single-
precision floating-point performance. While double-precision
(64-bit) performance is increasing, single-precision (32-bit) perfor-
mance is still faster on the current generation of GPGPU products.
Double-precision performance can be dramatically slower on older
generations of GPGPUs. Using mixed-precision arithmetic judi-
ciously, say for reduction operations [13,14] can preserve accuracy
along with other techniques for long-running simulations [15].

Many statistical modeling applications map efficiently to GPG-
PUs. Since they are massively parallel, Monte Carlo methods map
well as seen in the 30–100× speedups [16,17] for a single GPU
as reported by Salazay and Rohonczy for simulations of dynamic
NMR spectra [18]. Other authors report performance increases up
to 120× for Monte Carlo simulations using multiple GPUs in an
OpenMP framework [19]. In performance surveys of GPU-based



Download English Version:

https://daneshyari.com/en/article/444434

Download Persian Version:

https://daneshyari.com/article/444434

Daneshyari.com

https://daneshyari.com/en/article/444434
https://daneshyari.com/article/444434
https://daneshyari.com

