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Abstract

pKa calculations for macromolecules are normally performed by solving the Poisson–Boltzmann equation, accounting for the different

dielectric constants of solvent and solute, as well as the ionic strength. Despite the large number of successful applications, there are some

situations where the current algorithms are not suitable: (1) large scale, high-throughput analysis which requires calculations to be completed

within a fraction of a second, e.g. when permanently monitoring pKa shifts during a molecular dynamics simulation; (2) prediction of pKas in

periodic boundaries, e.g. when reconstructing entire protein crystal unit cells from PDB files, including the correct protonation patterns at

experimental pH. Such in silico crystals are needed by ‘self-parameterizing’ molecular dynamics force fields like YASARA YAMBER, that

optimize their parameters while energy-minimizing high-resolution protein crystals.

To address both problems, we define an empirical equation that expresses the pKa as a function of electrostatic potential, hydrogen bonds and

accessible surface area. The electrostatic potential is evaluated by Ewald summation, which captures periodic crystal environments and the

uncertainty in atom positions using Gaussian charge densities. The empirical proportionality constants are derived from 217 experimentally

determined pKas, and despite its simplicity, this pKa calculation method reaches a high overall jack-knifed accuracy, and is fast enough to be used

during a molecular dynamics simulation. A reliable null-model to judge pKa prediction accuracies is also presented.
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1. Introduction

The prediction of pKa values in proteins has made

considerable progress over the last years [1,2]. The Poisson–

Boltzmann equation (PBE) has become an important tool

because it allows the calculation of the electrostatic potential in

a heterogeneous solute–solvent system, taking into account

dielectric boundaries and the ionic strength. Initial approaches

to electrostatic calculations were based on rough approxima-

tions like spherical proteins [3]. The ability to solve the

Poisson–Boltzmann equation for arbitrarily shaped proteins [4–

6] cleared the path for a range of successful applications, such

as studies of enzymatic activity [7], pH-dependent conforma-

tional changes [8] and protein stability [9–11]. These

algorithms, however, are computationally expensive, and

consequently led to the development of several simplified

algorithms that avoid solving the PBE. Examples of these

algorithms are the Debye–Hueckel approach [12] and the

electrostatic screening functions [13,14].

pKa calculations have always focused on proteins in their

physiological environment, matching the experimental deter-

mination of pKa values, which is also done in solution using

NMR spectroscopy. However, the quality of pKa calculations

depends heavily on the availability of high resolution protein

structures. NMR structures of sufficient resolution are often not

available, and one is forced to predict solution pKa values using

X-ray structures. Much effort has been devoted to determining

the regions of structural divergence, excluding residues

involved in crystal contacts [15], optimizing X-ray structures

[16] and incorporating information on protein flexibility [17].

1.1. The goal is pKa prediction in protein crystals

The approach presented here has been developed due to a

lack of solutions for a problem that appears paradoxical, given
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the facts mentioned above: the prediction of pKa values in

protein crystals. Because of the crystal packing interactions,

these pKas certainly differ from those measured in solution. The

reason for addressing this problem becomes clear in view of

recent developments in force field research. Thanks to the

virtually unlimited resources provided by distributed comput-

ing systems like Models@Home [18], it became feasible to use

complete proteins instead of small molecules as optimization

targets when fitting the force field parameters [19]. This was

done by randomly changing force field parameters and running

simulations on a series of protein structures to see if the

parameter changes would be beneficial. Obviously, the protein

structures in the optimization set should be as realistic as

possible, otherwise the force field might memorize features that

are just structural artifacts. This can be achieved by taking high

resolution X-ray structures and reconstructing the entire unit

cell, including water molecules, counter ions and all solute

hydrogens. The correct placement of polar hydrogens is

especially important, and in addition to optimizing the

hydrogen-bond network [20], this requires the pKa values of

all ionizable residues in the protein crystal and the pH at which

the protein was crystallized. The force field parameters are then

optimized in crystal space, so that all the interactions

responsible for the experimentally observed structure can be

considered, while converging at a force field like YAMBER

[21]. Because crystal and solution environments obey the same

laws of physics, the optimized force field can be used in both.

2. Ewald summation captures the periodic environment

Electrostatic calculations in periodic crystal systems are

complicated by the infinite number of interactions. A clever

way of making the problem tractable is Ewald summation [22],

which allows the calculation of the potential due to the N

particles in the unit cell and an infinite number of periodic

replicas. The method combines a rapidly converging short-

range term with a long-range component evaluated in

reciprocal space [23]. If the reciprocal sum is calculated

using a particle-mesh approximation, the resulting particle

mesh Ewald (PME) algorithm [24] is considerably faster than

the standard Ewald method. PME is part of almost every

molecular dynamics program, and forms the basis for this

work. However, we only use the reciprocal space portion,

which provides the solution to Poisson’s equation with

periodic boundaries, Gaussian charge distributions and a

single dielectric constant. By ignoring the short-range term and

the associated damping of the reciprocal space term at short-

range, we essentially remove the long-range attribute from the

reciprocal space term: it now covers all distance ranges

equally, and differs from Coulomb’s law only by the use of

Gaussian charge densities instead of localized point charges.

Smeared-out Gaussians account for the uncertainty in atom

positions (which also proved beneficial for the development of

knowledge-based potentials [25]). Compared to the Poisson–

Boltzmann equation, this approach however lacks two

advantages: implicit counter ions and different dielectric

constants for solvent and solute.

In an extensive optimization study, Demchuck and Wade [1]

determined that the best dielectric constant for solvent exposed

residues is close to the one of water (80), while the protein

interior should be assigned a value in the range of 10–20. Since

20 differs from 80 only by a factor of 4, we hypothesized that a

single global dielectric constant could suffice for accurate

predictions, provided that some additional structural informa-

tion was incorporated to account for the simplification.

3. The pKa can be approximated as a function of

electrostatic potential, hydrogen bonds and accessible

surface

Using simplified physical considerations and some mode-

ler’s experience, we defined three rules of thumb for pKa

prediction. The first and partly the second rule have also been

mentioned in a recent analysis of carboxyl pKa values [26]:

� If an ionizable group is surrounded by negatively charged

residues, corresponding to a negative electrostatic potential,

protonation becomes easier, the pKa increases. Similarly, if

there are positively charged residues around, the pKa

decreases. As a first approximation, the pKa shift is thus

assumed to be proportional to the electrostatic potential.

� If an ionizable group accepts hydrogen bonds, the space to

place a proton is reduced, protonation becomes harder, and

the pKa decreases. If after protonation, the group can donate a

bond, protonation is favorable, the pKa increases.

� If a group accepts hydrogen bonds and is buried, the pKa is

decreased even further, because the side-chain cannot

facilitate protonation by moving to a different conformation

where it does not receive hydrogen bonds. If a buried group

can donate a hydrogen bond after protonation, the pKa

increases, because there is no space for water molecules that

could ease the energetic cost of two hydrogen-bond acceptors

facing each other.

These three assumptions were fused into an empirical

equation relating the pKa of a residue with the electrostatic

potential, the number of hydrogen bonds and the accessible

surface area:

pKa ¼ Model pKa þ
X

Ionizable atoms

½�A� EwaldEi þ B� HBi�

þ SignðHBSumÞ � C � SurfaceLoss (1)

In this equation, Model pKa is the standard pKa value of a

certain residue type, EwaldEi is the reciprocal space portion of

the Ewald energy of a charge +1 at the location of the ith

ionizable atom in the residue (in kcal/mol), HBi is the differ-

ence between (potentially) donated and accepted hydrogen

bonds at the ith atom, HBSum is the sum over all HBi, and

SurfaceLoss is the loss of accessible surface area of the side-

chain with respect to a fully exposed state. A, B and C are

empirical proportionality constants. The four unknown para-

meters Model pKa, A, B and C are globally optimized for each

amino acid type so that the RMSD between predicted and
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