A series solution for a coaxially fed monopole in a rectangular cavity

Mi Y. Park ${ }^{\mathrm{a}, *}$, Hyo J. Eom ${ }^{\text {b }}$
${ }^{\text {a }}$ Satellite Technology Research Center, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
${ }^{\text {b }}$ Department of Electrical Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

A RTICLE INFO

Article history:

Received 27 October 2013
Accepted 25 July 2014

Keywords:

Monopole
Rectangular cavity
Monopole coupling
Mode-matching

Abstract

The boundary-value problem of radiation from a coaxially fed monopole in a rectangular cavity is considered. The image theory is invoked to transform the original problem into a simple equivalent. The boundary conditions are enforced in conjunction with the mode-matching method to obtain a set of simultaneous equations for modal coefficients. Computations are performed to check validity and numerical efficiency of the series solution.

© 2014 Elsevier GmbH . All rights reserved.

1. Introduction

Coaxially fed monopoles and antennas in rectangular cavities, commonly used microwave structures, have been extensively studied in [1-8]. A Green's function approach was used in [1] to study radiation from a coaxially fed monopole in a rectangular cavity. The moment method was applied to model coaxial probes used in practical waveguides and cavities [2,3]. A full wave analysis and ANSOFT HFSS simulation were respectively performed to represent the input impedance of a monopole antenna placed inside the cavity in $[4,5]$. The transmission line model and the finite-difference method for time-domain modeling of antennas in a cavity were used in [6,7], respectively. The modal-expansion analysis combining mode matching and point matching method was performed to analyze a monopole with a delta gap source in cavities in [8]. Although the characteristics of a coaxially fed monopole in a rectangular cavity have been studied with various techniques, it is of interest to obtain a simple analytic solution without recourse to intensive numerical computation. The purpose of the present paper is to derive such a simple series solution based on the image method, the Fourier transform, and the mode-matching method [9,10]. In addition, Poisson's summation formula and residue calculus are used to represent the solution in fast convergent series that is efficient for computation. A brief theoretical summary and computation results are given next. Notations used in this paper closely follow those in [9-11].

[^0]
2. Field representations

Fig. 1 shows a coaxially fed monopole in a rectangular cavity where a monopole is located along the z-direction. The overall geometry is symmetrical with respect to the $x=0$ plane. Assume that an incident TEM (transverse electromagnetic) mode impinges on a monopole whose outer radius of a coaxial line is much smaller than the wavelength. The time convention $e^{-i \omega t}$ is suppressed throughout the analysis. We replace the original problem of Fig. 1 with an equivalent problem of Fig. 2 using the image theorem. In the equivalent problem of Fig. 2, an infinite number of coaxially fed monopoles are introduced in a parallel-plate waveguide. Note that the parallel-plate waveguide consists of two infinite conducting planes placed at $z=0$ and h_{2}. Herein, the $(j, u)=(0,0)$ coaxial line is a real source, while the others $(j, u=-\infty, \ldots,-1,0,1, \ldots, \infty$, $j=u \neq 0$) are due to image source contributions. In order to match the boundary conditions at $x= \pm s / 2$ and $y=-g, d-g$ in Fig. 1, we represent the magnetic field of the TEM wave incident on the (j, u) monopole of Fig. 2 as
$H_{\phi_{j u}}^{i_{j u}}\left(\rho_{j u}, z\right)=(-1)^{j+u} H_{\phi_{j u}}^{i_{00}}\left(\rho_{j u}, z\right)$
where $\left(\rho_{j u}, \phi_{j u}, z\right)$ is cylindrical coordinates centered at (j, u) monopole and $H_{\phi_{00}}^{i_{00}}\left(\rho_{00}, z\right)$ is the magnetic field of a incident TEM mode at $(0,0)$ monopole of Fig. 2. In the following analysis, our formulation will utilize the mode-matching method that was developed in [9]. It is convenient to divide the region into $I_{j u}$ ($\rho_{j u}<a_{1}, 0<z<h_{1}$), II, and III $_{j u}\left(a_{1}<\rho_{j u}<a_{2}, 0<z<\infty\right)$, where region II is the intersection of regions $I I_{j u}\left(\rho_{j u}>a_{2}, 0<z<h_{2}\right)$ of all monopoles and $j, u=-\infty, \ldots,-1,0,1, \ldots, \infty$. In region $I I I_{j u}$, the total field

Fig. 1. Coaxially fed monopole in a rectangular cavity (a) three-dimensional view, (b) top view and (c) side view.
comprises the incident, reflected, and scattered components. They are
$H_{\phi_{j u}}^{i_{j u}}\left(\rho_{j u}, z\right)=-(-1)^{j+u} \frac{e^{-i k z}}{\eta \rho_{j u}} N e^{i \phi}$
$H_{\phi_{j u}}^{r_{j u}}\left(\rho_{j u}, z\right)=-(-1)^{j+u} \frac{e^{i k z}}{\eta \rho_{j u}} N e^{i \phi}$
$E_{Z}^{I I I}{ }_{j u}\left(\rho_{j u}, z\right)=\frac{2}{i \omega \epsilon \pi} \int_{0}^{\infty}(-1)^{j+u} R\left(\kappa \rho_{j u}\right) \cos (\zeta z) d \zeta$
where $E_{z}^{I I I}{ }_{j u}\left(\rho_{j u}, z\right)$ represents the z-component of the electric field in region $I I I_{j u}$. Here, N and ϕ are constants, $k(=\omega \sqrt{\mu \epsilon})$ is the wave number, $\kappa=\sqrt{k^{2}-\zeta^{2}}$, and $\eta(=\sqrt{\mu / \epsilon})$ is the intrinsic impedance. Note that $R\left(\kappa \rho_{j u}\right)=J_{0}\left(\kappa \rho_{j u}\right) \widetilde{E}^{+}(\zeta)-N_{0}\left(\kappa \rho_{j u}\right) \widetilde{E}^{-}(\zeta)$,
where $\widetilde{E}^{+}(\zeta)$ and $\widetilde{E}^{-}(\zeta)$ are the unknown coefficients, and $J_{0}(\cdot)$ and $N_{0}(\cdot)$ are the Bessel functions of the first and second kinds, respectively. In regions $I_{j u}\left(\rho_{j u}<a_{1}, 0<z<h_{1}\right)$ and $I I_{j u}\left(\rho_{j u}>a_{2}, 0<z<h_{2}\right)$, we represent the scattered electric fields in terms of the unknown discrete modal coefficients p_{m} and q_{m}. They are
$E_{z}^{I j u}\left(\rho_{j u}, z\right)=\frac{i}{\omega \epsilon} \sum_{m=0}^{\infty}(-1)^{j+u} p_{m} \xi_{1 m} \cos \left(h_{1 m} z\right) J_{0}\left(\xi_{1 m} \rho_{j u}\right)$
$E_{z}^{I I_{j u}}\left(\rho_{j u}, z\right)=\frac{i}{\omega \epsilon} \sum_{m=0}^{\infty}(-1)^{j+u} q_{m} \xi_{2 m} \cos \left(h_{2 m} z\right) H_{0}^{(1)}\left(\xi_{2 m} \rho_{j u}\right)$
where $h_{p m}=m \pi / h_{p}, \xi_{p m}=\sqrt{k^{2}-h_{p m}^{2}}$, and $H_{0}^{(1)}(\cdot)$ is the zerothorder Hankel function of the first kind. In view of superposition principle, we represent the total electric field in region II (intersection of regions $I_{j u}$ of all monopoles) of Fig. 2 approximately as
$E_{z}^{I I}=\sum_{u=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} E_{z}^{I I_{u}}\left(\rho_{j u}, z\right)$

3. Boundary conditions

Our aim is to constitute a set of simultaneous equations for the unknown discrete modal coefficients p_{m} and q_{m}. The boundary conditions need to be enforced to determine p_{m} and q_{m}. Thanks to the symmetry, we only need to apply the boundary condition at a real monopole ($\rho_{00}=a_{1}, a_{2}$). Applying the Fourier cosine transform $\left[\int_{0}^{\infty}(\cdot) \cos \left(\zeta^{\prime} z\right) d z\right]$ to the tangential electric field $\left(E_{z}\right)$ continuity at $\rho_{00}=a_{1}$, we get
$R\left(\kappa a_{1}\right)=-\sum_{m=0}^{\infty} p_{m} \xi_{1 m} J_{0}\left(\xi_{1 m} a_{1}\right) F_{m}^{1}(\zeta)$
where
$F_{m}^{p}(\zeta)=\frac{(-1)^{m} \zeta \sin \left(\zeta h_{p}\right)}{\zeta^{2}-h_{p m}^{2}}$
Similarly, applying the Fourier cosine transform to the tangential electric field $\left(E_{z}\right)$ continuity at $\rho_{00}=a_{2}$, we get
$R\left(\kappa a_{2}\right)=-\sum_{m=0}^{\infty} q_{m} S_{0 m} \xi_{2 m} F_{m}^{2}(\zeta)$
where

$$
\begin{align*}
S_{p n}= & H_{p}^{(1)}\left(\xi_{2 n} a_{2}\right)+J_{p}\left(\xi_{2 n} a_{2}\right) \sum_{\frac{u=-\infty}{u \neq 0}}^{\infty}(-1)^{u} H_{0}^{(1)}\left(\xi_{2 n}|u| s\right) \\
& +J_{p}\left(\xi_{2 n} a_{2}\right) \sum_{\substack{u=-\infty}}^{\infty} \sum_{\substack{j=-\infty \\
j \neq 0}}^{\infty}(-1)^{j+u} H_{0}^{(1)}\left(\xi_{2 n} d_{j u}\right) \tag{11}
\end{align*}
$$

Here $d_{j u}$ is the distance between the $(0,0)$ and (j, u) monopoles of Fig. 2, and $H_{p}^{(1)}(\cdot)$ and $J_{p}(\cdot)$ are the Hankel function of the first kind and the Bessel function of the first kind, respectively. Graf's addition theorem [12] was used. Note that $S_{p n}$ represents the contribution of each coaxial line to the $(0,0)$ coaxial line. The fast convergent series form of $S_{p n}$ is summarized in Appendix A.

We next utilize the tangential magnetic field $\left(H_{\phi}\right)$ continuity and sinusoidal orthogonality to obtain a set of simultaneous equation

https://daneshyari.com/en/article/444930

Download Persian Version:
https://daneshyari.com/article/444930

Daneshyari.com

[^0]: * Corresponding author. Tel.: +82 42350 8632; fax: +82 428610064

 E-mail addresses: mypark@kaist.ac.kr (M.Y. Park), hjeom@ee.kaist.ac.kr (H.J. Eom).

