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Theflowfields anddynamicmotions of conical graupel of diameters 0.5–5mmfalling in air of 800h Pa and−8 °C
are studied by solving the transientNavier-Stokes equations numerically for flowpast the conical graupel and the
bodydynamics equations representing the 6-degrees-of-freedommotion that determines the position and orien-
tation of the graupel in response to the hydrodynamic force of the flow fields. The shape of conical graupel made
through a simple but practical existing mathematical equation allows us to have an uneven mass distribution,
which is generally believed to have great influence on ice particles' orientations while falling when inertial
force becomes increasingly dominant over other effects. The simulatedmotions include vertical fall, lateral trans-
lation, sailing, rotation and pendulum swing. The computed flow fields are characterized in terms of streamtrace
patterns as well as the vorticity magnitude fields, and the corresponding motions of the conical graupel is phys-
ically featured by looking upon the graupel surface distributions of pressure coefficient, torques contributed by
both pressure aswell as viscous effects. Tumbling doesn't occurwhen an initial orientation of the graupel is either
20° or 160° about Y axis, and the torque contributed by the pressure effect is dominant over that contributed by
the viscous effect.
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1. Introduction

The riming process is a collision-coalescence process where ice par-
ticles have mutual collisions with supercooled water droplets and the
liquid later become frozen on the ice surface (Pruppacher and Klett,
1997;Wang, 2013). Thegraupel particles are products of the rimingpro-
cess typically found in a variety of convective clouds and become hail-
stones in vigorous thunderstorms with sufficient updraft to hold them.

Because of its importance in thunderstorm development, the pres-
ent generation cloud resolvingmodels usually include some form of pa-
rameterizations about graupel microphysics (e.g., Chen and Xiao, 2010;
Kovačević and Ćurić, 2013, 2015; Noppel et al., 2010; Straka and
Mansell, 2005). Due to our limited understanding of graupel behavior
in clouds at current stage, however, there are rooms for improvement
on these parameterizations.

One of the first tasks tomake improvement is to understand correct-
ly the hydrodynamic behavior of graupel when they are falling in the
cloud. Graupel particles do not always fall straight downwards, like
other falling objects (Field et al., 1997; Willmarth et al., 1964;

Zikmunda and Vali, 1972); instad, they will likely flutter down to the
ground and occasionally tumble as their orientation changes dramati-
cally with time. The fluttering may be mainly caused by the coupling
of upward or downwardmotions to lateral oscillations by the surround-
ing air fluid through eddy shedding (Belmonte et al., 1998). This inevi-
tably leads to the complicated orientation-varying motions and their
underlying physics, thus making the surrounding air fluid patterns
evenmore complicated than when the flow is going past the stationary
ice particles. Understanding of the motion and flow field is crucial to
better understanding of the riming growth anddeveloping thehailstone
suppression technologies to curtail prodigious damage caused by the
falling hailstones. To this end, we investigate the dynamic conical-
shaped graupel particles.

A number of recent publications have addressed some of themodel-
ing challenges associated with the analysis of flow fields around the ice
particles. These include the further flow field studies for spherical hail-
stones (Cheng and Wang, 2013; Cheng et al., 2014), snowflakes
(Cheng et al., 2015; Ji and Wang, 1990), cylindrical ice crystals
(Hashino et al., 2014, 2016; Ji andWang, 1991;Wang and Ji, 1997), con-
ical graupel (Kubicek and Wang, 2012; Wang and Kubicek, 2013), as
well as lobed hailstones (Wang et al., 2015). In addition to the men-
tioned numerical simulations, from an actual experimental perspective,
Jayaweera and Mason (1965) first described the behavior of freely
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falling cylinders and cones in a viscous fluid with their stability discus-
sion, and, about fifteen years later, Pflaum et al. in Pruppacher's group
in UCLA (Pflaum, 1978, 1980; Pflaum et al., 1978; Pflaum and
Pruppacher, 1979) used a vertical wind tunnel to describe some essen-
tially observedmotions of the ice graupel particles.More recently, some
laboratory experiments on graupel riming with collection kernels were
carried out by Blohn et al. (2009) in Borrmann's group at Mainz
Germany. While these efforts are helpful to better understand the
growth of ice particles, the hydrodynamic effects on free-falling graupel
particles still remain hazy.

Modern numerical methods play an important role not just in
retaining the computational accuracy, but also in accelerating the com-
putations, especially for many 3D complex fluid flow transport process-
es (like our complicated motions of the conical graupel and its
surrounding fluid fields), by at least two orders of magnitude compared
to traditional techniques (Chueh, 2011; Chueh et al., 2013). These
methods, which a high performance simulator needs to acquire to im-
prove computational speed for a given level of accuracy, provide the
coverage of at least most of the following five areas: (1) higher order
spatial discretizations that can yield the same accuracy at smaller com-
putational cost, but need to incorporate nontrivial stabilization mecha-
nisms for hyperbolic problems to benefit from the higher accuracy
(Kröner, 1997; van Leer, 2006); (2) adaptive mesh refinement that
can vastly reduce the number of cells required to resolve the flow field
(Ainsworth and Oden, 2000; Bangerth and Rannacher, 2003; Carey,
1997; Chueh et al., 2010; Verfȕrth, 1996); (3) adaptive time stepping
methods that allow the use of large time steps limited solely by the
physical time scale rather than numerical stability (Chueh et al., 2010,
2013); (4) operator splitting methods for coupled problems to trans-
form a complex, coupled problem into a sequence of simpler problems
for which more efficient solver techniques are available (Chueh et al.,
2013); (5) efficient solver and preconditioning methods that can accel-
erate the solution of the linear problems (Golub and Van Loan, 1996).
Nowadays, it is already becoming more widely available for many
open source softwares (e.g. OpenFOAM– http://www.openfoam.com/;
deal.II–http://www.dealii.org/) as well as commercial softwares (e.g.
ANSYS Fluent and COMSOL) to be practically equipped with such
state-of-the-art numerical methods. And, most importantly, ones from
academic fields other than computational or numerical science can di-
rectly apply the methods in numerical simulations as a black box to
their engineering and scientific purposes for the understanding of
their engineering frontier and fundamental physics, respectively, with-
out knowing the details of these complicated methods.

Numerical solutions of the flow fields around the falling graupel or
hailstones were previously unavailable, chiefly because of difficulty in
meshing the complex graupel and hailstone shapes created through
some mathematical formulation (Wang, 1982; Wang et al., 2015).
Without tackling this thorny problem, many tiny localized flow behav-
iors accompanied by complex graupel and hailstone shapes may not
have been revealed and hence not elucidated through the numerical
simulations, thus compromising the reliability of the simulations. How-
ever, recent numerical packages (e.g. Gmsh–http://geuz.org/gmsh/,
OpenFOAM and ANSYS Fluent) already make it available and practical
for us to generate such complex shapes for the simulations in various
different particular file formats through CAD (computer-aided design).
One of them, called STL(standard tessellation language or
STereoLithography), which was already used in our previous work for
lobed hailstones and is supported by many softwares (Wang et al.,
2015), can allow us effectively to represent the complex geometrical
shapes of the graupel and hailstones. By employing this capability
with the above-mentioned high speed computers, it has become practi-
cal to perform the numerical computations for such flow cases.

In this study the Navier-Stokes equations are solved numerically
while considering the dynamic motion of the graupel. We present and
discuss the results of a 3D numerical study on the dynamic conical grau-
pel falling in air in terms of the flow fields and the hydrodynamic

motion of the graupel. This study is a sequel of the dynamic snowflake
(Cheng et al., 2015) and ice crystal (Hashino et al., 2016). The present
paper is organized as follows. In Section 2, the mathematical and phys-
ical background for the dynamic graupel falling in air, the governing
equations, and themathematical expressions used to generate the grau-
pel are presented, followed by the results and their discussions in
Section 3 and the summary and future outlook in the final Section.

2. Physics and mathematics of the flow field calculation

Many hydrometeors have complicated shapes, such as hexagonal
columns, plates, and dendrites for ice crystals, cones, and spheroids for
graupel and hailstones, and near-oblate-spheroids for large raindrops
(Wang, 1982). These shapes oftenmake the analysis of physical proper-
ties difficult. One often has to approximate these shapes by other sim-
pler shapes, for example, large raindrops by oblate spheroids, ice
columns by circular cylinders and ice plates by thin oblate spheroids.
The approximations are made so that simple mathematical formulas
can be used to describe the shapes of these particles. In the present
study, we use a mathematical equation given by Wang (1982) to de-
scribe essentially the size and shape of the conical graupel used in our
calculation. This equation is shown in the following:
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where x and z are thehorizontal and vertical coordinates, and a and c are
the horizontal and vertical semi-axis lengths, respectively, of an ellipse,
as shown in Fig. 1. The parameter λ, whose value is ought to vary be-
tween 1 and∞, serves to control the sharpness of the peak of the conical
graupel: small λ produces sharp apex whereas large λ produces
smoothly-curved peak. It is important to note that all the graupel parti-
cles considered herein are assumed to have the value of λ=1 so that all
of them have a sharp apex on the top and a nearly flat on its bottom,
representing that the mass is unevenly distributed in space between
its top and bottom ends. This special quality can also be typically
found in natural graupel. So, although it is possible to generate more
protrusions on the surface like those shown in Wang et al. (2015), we
feel that the present method already gives a typical approximation for
the shape of graupel for us to unravel the preliminary underlying
physics.

Fig. 1. Definition of the coordinate system and various quantities. Solid curve is an axial
cross-section of a conical body generated by Eq. (1) proposed by Wang (1982). Dashed
curves (1) and (2) are the generated ellipse and limiting ellipse, respectively. The origin
O shown here represents the position (0,0,0) in relation to Eq. (1).
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