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Reanalysis datasets have been under critical scrutiny due to their widespread use in various climatic and hydro-
logical modeling applications, in particular over many areas of the globe with limited or absent reliable observa-
tional data. Nevertheless, reanalysis products are in the process of continuous improvements reflecting the
improved system knowledge, model physics and assimilation techniques. In addition, several internal model ad-
justments have also been adopted tominimize the bias in reanalysis datasets. Considering these factors, it is nec-
essary to investigate the inherent chaotic dynamics of reanalyses and the possible discrepancies, if any, with
respect to the observational data. Here we compare and contrast the chaotic dynamics of daily precipitation
and dailymean surface temperature simulated by the reanalysis against observed data over the continental Unit-
ed States. Our focus is on four reanalysis products: the National Aeronautics and Space Administration's Modern
Era Retrospective-Analysis for Research and Applications (MERRA), European Centre for Medium-RangeWeath-
er Forecasts' ERA-Interim, JapaneseMeteorological Agency's Japanese 55-year Reanalysis (JRA-55), and National
Center for Environmental Prediction/National Center for Atmospheric Research's Reanalysis I. The inherent cha-
otic dynamics measured in terms of three statistics (i.e., maximum predictability, predictive error and predictive
instability) reveal the inconsistency among the four reanalysis products. ERA-Interim is capable of simulating the
precipitation's chaotic dynamics overmuch of the study region, whileMERRA is found to be superior in capturing
the temperature's chaotic dynamics. Analyses on various aspects of daily precipitation and temperature indicate
that the biases in precipitation's chaotic dynamics may be attributed to the inconsistencies in simulating the sig-
nal-to-noise ratio and non-rainy days, while biases in temperature's chaotic dynamics could be due to the failure
in replicating the abrupt trends in the recent decades by the reanalyses products.
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1. Introduction

Long consistent records of the global climate system and accurate in-
formation of its variability are essential for a number of research and so-
cietal applications. Moreover, reliable meteorological records based on
observations are not always available for large areas of the world.
These shortcomings are generally mitigated by using global retrospec-
tive analysis (or reanalysis) datasets. Reanalysis products provide a
temporally and spatially consistent continuous record of the global
state of the atmosphere by assimilating available observations within
state-of-the-art numerical weather prediction (NWP) models. These
products have been used for a wide range of applications, including cli-
mate monitoring, development and improvements of climate models,
generation of meteorological datasets, and assessment of water budget.
Due to their widespread use especially in climatologic and hydrologic

analyses, the ability of reanalysis products to accurately simulate the
global dynamics has always been under scrutiny (e.g., Rood and
Bosilovich, 2010), with particular emphasis on the consistency in repro-
ducing the variability in atmospheric moisture transport (e.g.,
Bosilovich et al., 2011; Trenberth et al., 2011; Zhao and Li, 2006), precip-
itation (e.g., Bosilovich et al., 2008; Decker et al., 2012; Lin et al., 2014)
and temperature (e.g., Bosilovich, 2013; Chen et al., 2014; Decker et
al., 2012).

The uncertainties in reanalyses primarily arise from the use of NWP
models in reproducing the observational records, and from the assimila-
tion of various datasets with different densities and characteristics (e.g.,
satellite, weather stations).Moreover, there are uncertainties due to the
deficiencies in the model's physics leading to incorrect representations
of system dynamics. A number of major agencies and research centers,
such as the National Centers for Environmental Prediction (NCEP), the
European Centre for Medium-Range Weather Forecasts (ECMWF), the
National Aeronautics and Space Administration (NASA) and the Japa-
nese Meteorological Agency (JMA) have been developing and improv-
ing these products.
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Despite recent advancements, including 4D data assimilation tech-
niques, the strengths and weaknesses of reanalysis datasets in simulat-
ing different aspects of moisture transfer and various hydro-
meteorological variables have been discussed in different studies (e.g.,
Bosilovich, 2013; Chen et al., 2014; Feng and Houser, 2014; Ferguson
and Villarini, 2012; Hodges et al., 2011; Kang and Ahn, 2015; Lin et al.,
2014; Thorne and Vose, 2010; Zhao et al., 2015). The ability of
reanalyses in accurately simulating various components of the hydro-
logical cycle, especially precipitation and temperature, has been critical-
ly examined, with particular emphasis on occurrences, decadal and
seasonal variability, trends, just to cite a few. Overall, great caution is ad-
vised while using model diagnostic hydrologic variables from
reanalyses (Bosilovich et al., 2011; Trenberth et al., 2011).

While the discrepancies in terms of consistency among reanalysis
and predictive skill (in terms of the performance assessed using differ-
ent skill metrics such as bias, root mean square error (RMSE), correla-
tion between the model simulations and the observations) have been
investigated (e.g., Bosilovich et al., 2007; Feng and Houser, 2014; Fu
Xiouhua et al., 2011; Hodges et al., 2011; Hofer et al., 2012; Lee et al.,
2010), the inherent predictability dynamics of the various reanalyses
time series with respect to the observations is still unexplored. Unlike
the common definition of the term “dynamics” used in any study in
the NWP literature (e.g., Bauer et al., 2015; Kalnay, 2003; Li et al.,
2013; Lorenz, 1965; Somerville, 1987), the use of the term “dynamics”
in the present study indicates the sensitivity due to initial conditions,
the divergence of trajectories and the uncertainty arising thereby in
any chaotic time series. Hence, the term “dynamics” used in this study
refers more to chaotic dynamics limiting the predictability of the time
series, which can be measured by computing the maximum Lypaunov
exponent of the series. The research questions we will address in this
study are: (i) Are the reanalyses dynamically consistent with the ob-
served variables? (ii) Are the trajectory dynamics and the sensitivity
to initial conditions of the observations and reanalyses comparable?
The investigation of these questions would reveal the similarities and
dissimilarities in the inherent dynamics of reanalyses with respect to
observations or reference datasets. The goal of this study lies in the anal-
ysis of the consistency in the dynamics of precipitation and temperature
from various reanalyses datasets across the United States in terms of the
inherent predictability of the system. Inherent predictability is estimat-
ed through the Lyapunov exponent, a commonly used measure of the
exponential divergence of the nearby trajectories.

2. Data and study region

We use daily precipitation data with 0.25° × 0.25° resolution over
the continental United States from the National Oceanic and Atmo-
spheric Administration (NOAA) Climate Prediction Center (CPC) Unified
Precipitation Project (http://www.esrl.noaa.gov/psd/) as precipitation
reference data. The spatial coverage is 20°N–50°N, and 230°E–305°E
and we focus on the period from 1 January 1979 to 31 December 2006
(to avoid the gaps in the CPC time series after 2006).

We usemean daily temperature fromNorth American Land Data As-
similation System (NLDAS-2) as reference data. NLDAS-2 primary forc-
ing is derived from North American Regional Reanalysis (NARR). NARR
is reported to exhibit substantial improvement in the accuracy of (espe-
cially) temperatures throughout the troposphere, when compared with
Global Reanalysis (Mesinger et al., 2006). The spatial resolution of
NLDAS-2 is 0.125° × 0.125° and we focus on the period from 1 January
1979 to 31 December 2014.

We consider four of the most widely used reanalysis products:
NCEP/National Center for Atmospheric Research (NCAR) Reanalysis I
(Kalnay et al., 1996), ECMWF's ERA-Interim (Dee et al., 2011b), NASA's
Modern-Era Retrospective Analysis for Research and Applications
(MERRA; Rienecker et al., 2011), and JMA's Japanese 55-year Reanalysis
(JRA-55; Ebita et al., 2011; Kobayashi et al., 2015). We restrict our

analyses to these four reanalysis products because they are widely
used in climatologic and hydrologic studies.

The spatial resolution of these reanalyses differs from the reference
data. Because themain objective of this study is to check the consistency
in internal dynamics through predictability, the reference datasets are
interpolated to the grid resolution of the different reanalyses through
a nearest neighbour method.

3. Methodology

In any chaotic system, the limit in predictability arises due to the de-
pendence on initial conditions and subsequent exponential divergence
of nearby trajectories, thereby limiting the predictability after a few
time steps. The Lyapunov spectrum measures the divergence of trajec-
tories with respect to all dimensions and hence, gives a limit of predict-
ability. The rate of divergence may vary for different dimensions,
depending upon the total dimension of the system considered. The di-
vergence of trajectories with respect to all dimensions is referred as
Lyapunov spectrum. The vast majority of the studies concentrate on
maximal Lyapunov exponent instead of computing thewhole spectrum
because themaximal Lyapunov exponent itself represents a fair approx-
imation of the total uncertainty exhibited by the system. Many algo-
rithms have been developed to calculate the maximal Lyapunov
exponent (e.g., Kantz, 1994; Rosenstein et al., 1993; Wolf et al., 1985).
More details on the computation of maximal Lyapunov exponent and
its application in daily hydrological time series can be found in
Dhanya and Nagesh Kumar (2011, 2013). The algorithms developed to
estimate the Lyapunov exponent or Lyapunov spectrum either neglect
the local nature of the divergence or dilute the computations with line-
arity assumption for divergence. However, the assessment of uncertain-
ty of highly complex nonlinear systems (e.g., atmosphere) using these
algorithms may be inappropriate. In light of these limitations, a nonlin-
ear finite time Lyapunov exponent (FTLE) was introduced by Ding and
Li (2007) to estimate the predictability limit of geopotential height. In
this study, we employ FTLE tomeasure the predictability characteristics
of temperature and precipitation over the continental United States.

FTLE takes into account the expected variations in the initial error
growth at different places in the attractor, which complex atmospheric
systems usually exhibit (e.g., Nese, 1989; Yoden and Nomura, 1993;
Ziehmann et al., 2000). The average error growth of trajectorieswith re-
spect to the initial position ismeasured, and the time atwhich the initial
error growth reaches a saturation value is taken as the predictability
limit. The detailed steps to calculate FTLE and predictability limit can
be found in Ding and Li (2007) and Ding et al. (2008).

Any longer-lead predictions aremeaningless after this limit, because
the system is assumed to have achieved a stochastic state at this point.

Fig. 1. Illustration of the typical evolution of the relative growth of the initial error with
time.

342 C.T. Dhanya, G. Villarini / Atmospheric Research 183 (2017) 341–350

http://www.esrl.noaa.gov/psd/


Download English Version:

https://daneshyari.com/en/article/4449571

Download Persian Version:

https://daneshyari.com/article/4449571

Daneshyari.com

https://daneshyari.com/en/article/4449571
https://daneshyari.com/article/4449571
https://daneshyari.com

