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a  b  s  t  r  a  c  t

This paper  extends  the  cubature  Kalman  filter  (CKF)  to deal  with  systems  involving  nonlinear  states
and  linear  measurements  (herein  called  the  nonlinear–linear  combined  systems)  with  additive  noise.
The  method  is  referred  to as the  nonlinear–linear  square-root  cubature  Kalman  filtering  (NL-SCKF).  In
NL-SCKF,  the  cubature  rule,  combined  with  a QR  decomposition,  singular  value  decomposition  and a
linear  update  without  requirement  of  cubature  points,  is  designed  to update  nonlinear  states  and  linear
measurements.  In  addition,  the  convergence  analysis  of NL-SCKF  is  performed.  Simulation  results  in two
selected problems,  namely  filtering  chaotic  signals  and  chaos-based  communications,  indicate  that  the
proposed  NL-SCKF  with  lower  computation  complexity  achieves  the  same  accuracy  as  the  standard  SCKF,
and outperforms  CKF  significantly.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The Bayesian filtering provides a unified framework based on
a recursive approach to solving nonlinear filtering problems. In
general, the Bayesian filtering is developed on the basis of a state-
space model which consists of two components, namely, a process
model describing the evolution of a hidden state of the system,
and a measurement model capturing noisy observables related to
the hidden state [1]. In the Bayesian filter, the posterior density
of the system’s state provides a complete statistical description
for the state variables at a given time. In practice, a suboptimal
solution of the posterior density is employed either locally or glob-
ally. In the local approach, the predicted density and the posterior
density are assumed to be Gaussian. Nonlinear filters, such as the
extended Kalman filter (EKF) [2,3], the central-difference Kalman
filter (CDKF) [4], the unscented Kalman filter (UKF) [5,6], and the
quadrature Kalman filter (QKF) [7–10], fall under this category.
However, these filters may  suffer from divergence or the curse
of dimensionality [8,12]. In the global approach, e.g., the parti-
cle filter (PF), no assumption is made about the posterior density,
which is approximated by a large number of samples [13]. Typically,
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the global approaches involve enormous computational overheads,
and are more difficult to implement in practice.

Recently, the third-degree spherical-radial cubature rule (SRCR)
and spherical simplex-radial cubature rule (SSRCR) are applied
to numerically compute multivariate moment integrals involved
in the nonlinear Bayesian filter. This has formed the basis of
the cubature Kalman filter (CKF) [1,11,12,14] and the spherical
simplex-radial cubature Kalman filter (SSRCKF) [15,16]. The SRCR
method only requires an even number of equally weighted cuba-
ture points (2n  points, where n is the dimension of the state vector)
distributed uniformly over an ellipsoid centered at the origin [17],
yet the SSRCR method requires 2n + 2 cubature points [15]. In
addition, at the cost of high computational complexity, the corre-
sponding high-order CKF and SSRCKF improve numerical accuracy
compared with CKF and SSRCKF to some extent. Hence, compared
with the aforementioned local approaches, CKF provides an effi-
cient nonlinear filter that could be applied to high-dimensional
nonlinear filtering problems with minimal computational effort.

The design of CKF is based on a dynamical state-space model
that describes the physical process and measurement equations.
In practice, many nonlinear filtering problems can be described
by nonlinear process equations and linear measurement equations
[3]. It is therefore of practice interest to develop a novel CKF for
nonlinear–linear combined systems to improve computation effi-
ciency. Chaos-based spread spectrum communication [18,19] and
noise reduction of chaotic signals [20] are two  good examples of
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Fig. 1. Block diagram of filtering noisy contaminated chaotic signal.

nonlinear–linear combined systems. The motivation of this paper
is to extend CKF to deal with the aforementioned class of sys-
tems involving nonlinear states and linear measurements, and to
perform its convergence analysis. The resulting filtering algorithm
is here referred to as the nonlinear–linear square-root cubature
Kalman filtering (NL-SCKF).

The rest of the paper is organized as follows. Section 2 presents
a general nonlinear filtering problem in the chaotic signal context.
In Section 3, the new NL-SCKF is developed by using SVD and the
related matrix operations based on CKF. The convergence analy-
sis of the proposed NL-SCKF is performed in Section 4. Section 5
provides computer simulations, demonstrating the convergence
features and efficiency of NL-SCKF. An application to chaotic param-
eter modulation is also described. Further development of NL-SCKF
is discussed in Section 6. Section 7 concludes this paper.

2. Problem statement

We  consider the problem of filtering chaotic signals with addi-
tive Gaussian noise as shown in Fig. 1, which can be described by
the following dynamical state-space model in discrete time.

xk = f(xk−1) (1)

yk = Hkxk + vk, (2)

where xk ∈ R
n is the state vector of the nonlinear dynamical system

in discrete time k; f : R
n → R

n denotes a nonlinear process equation
for generating chaotic signals; Hk is the m × n measurement matrix;
yk ∈ R

m is the measurement vector; and vk is the measurement
Gaussian noise with zero mean and covariance Rk.

The nonlinear–linear combined system has already been applied
in control, navigation, chaotic communication and so on [18,19,21].
Suppose the predictive density p(xk|y1:k−1) and the filter likelihood
density p(yk|y1:k) are both Gaussian. The Gaussian posterior den-
sity p(xk|y1:k) is consequentially Gaussian. In the Bayesian filtering
paradigm, the posterior density of the state provides a complete
statistical description of the state at a given time [22]. Therefore,
the solution to the posterior density constitutes a state estimation
[11], i.e.,

x̂k =
∫
Rn

f(xk−1)p(xk|y1:k)dxk. (3)

The estimation of the state vector xk in Bayesian filter reduces
to computing multi-dimensional integrals. To avoid directly solving
the above integral (3), numerical integration methods are required.
Consider the posterior density having a standard Gaussian density
with zero mean and unit covariance. An approximation I(f) of this
multi-dimensional integral (3) can be implemented by an L-point
numerical integration, i.e.,

I(f) ≈
L∑

i=1

ωif(�i), (4)

where �i is a set of points and ωi is the associated weight.
The third-degree spherical-radial cubature rule entails a total

of 2n cubature points for computing the integral [17]. The cubature

points and their associated weights for computing a standard
Gaussian weighted integral are shown as follows [11,17]:

�i = √
n
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ωi = 1
L

, i = 1, 2, . . .,  L = 2n. (6)

Therefore, the integral in (3) can be computed by the cubature-
point set {�i, ωi} based on (4). The cubature Kalman filter (CKF)
can be incorporated in the third-degree spherical-radial cubature
rule of the Bayesian filter to provide a systematic solution to high
dimensional nonlinear filtering problems.

3. Nonlinear–linear square-root cubature Kalman filter

In the standard CKF algorithm, the error covariance matrix may
lose symmetry and positive definiteness, causing unstable or even
divergence behavior [11,23]. To circumvent this problem, a square-
root cubature Kalman filter (SCKF) [11] is introduced to propagate
the square root A of error covariance P, and the square root can also
preserve the symmetry and positive definiteness of the covariance
matrix for improving numerical stability of CKF.

The QR decomposition of A is used to keep the square root as a
triangular matrix for computational convenience [7,24], i.e.,

P = AAT = RT QT QR = RT R = SST , (7)

where AT = QR, S = RT, and R is an upper triangular matrix. Thus, S
is also a triangular matrix, and its sparseness reduces storage space
and improves computational efficiency. The QR decomposition of
the square root of the error covariance in CKF constitutes the key
feature of SCKF.

In addition, matrix inversion is a main numerically sensitive
operation of CKF, which can also destroy symmetry and posi-
tive definiteness of the covariance matrix [11,23]. Singular value
decomposition can be used to calculate the matrix inverse effi-
ciently, especially in the case of square matrices. Factorize the
square root A of error covariance P using the SVD operation, i.e.,
A = UDVT, where U and V are both orthogonal matrices, and D is the
matrix filled with zeros everywhere except along the main diag-
onal of its maximal upper-left square submatrix. Hence, the error
covariance P can be rewritten as

P = AAT = UDVT VDT UT = UDDT UT , (8)

According to the characteristics of U and D, the matrix inverse
of P can be calculated by

P−1 = U(DDT )
−1

UT , (9)

where (DDT )
−1

can be obtained easily by only calculating the recip-
rocal of the square of the main diagonal of D.

Based on the nonlinear process equation (1) and the linear mea-
surement equation (2) in the presence of additive Gaussian noise, a
set of third-degree spherical-radial cubature points are sampled for
computing the predictive density in the time update, and the linear
Kalman filter is used in the measurement update for alleviating the
computational burden. Using SCKF and SVD, we propose a novel
nonlinear–linear square-root cubature Kalman filtering algorithm,
which is described as follows.

Suppose the square-roots of the two  covariance matrices satisfy
Pk = SkST

k and Pk|k−1 = Sk|k−1ST
k|k−1. The cubature-point set {�i, ωi}

is calculated using (5) and (6). The NL-SCKF algorithm for estimating
the state vectors xk in the nonlinear–linear combination system’s
state-space model (1) and (2) can be summarized as follows.
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