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a  b  s  t  r  a  c  t

We  develop  a secure  random  linear  network  coding  scheme  on wiretap  networks  where  a  wiretapper  can
only  eavesdrop  on a limited  number  of  channels.  On  one  hand,  by  refining  Lima’s  “locked  coefficients”
method  and  applying  the approach  of one-time  pad,  our scheme  can  well  protect  message  packets  with-
out  decreasing  network  throughput.  On  the other  hand,  by treating  ciphertext  as  noisy  symbols,  inspired
by  the  physical  layer  technique,  and  applying  Shamir’s  secret  sharing  scheme,  our  scheme  can  success-
fully  protect  secret  random  seed  without  any  forms  of  key  exchange  or  secret  channels.  Compared  to
existing  schemes,  our  scheme  has  minimum  information  overhead,  independency  of hash  functions,
and  no  restriction  on  global  encoding  kernel.  Finally,  we  analyze  the  computational  complexity  of our
proposed  scheme  and  rigorously  prove  that  our  scheme  can  achieve  secure  network  communication.
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1. Introduction

Network coding is a generalization of traditional store and for-
ward routing scheme [1]. While network coding greatly advances
data transmission and network reliability [2,3], it brings forward
new security challenges to the emergent network coded systems
[4]. There are basically four groups of secure network coding
schemes against external wiretappers.

The first group is the schemes of information theoretic secu-
rity. Cai and Yeung [5] developed a secure linear network code
based on the assumption that an external wiretapper can access
only a limited number of channels. Wang and Guo [6] considered
the perfect security in linear network coding using well-designed
precoding matrix. The construction of precoding matrix is equiva-
lent to finding proper encoding vectors that realize perfectly secure
transmission of secret message. Rouayheb [8] proposed a secure
protocol by combining the Ozarow–Wyner approach [7] of coset
coding at the source with inherent security. A secure network cod-
ing with nonuniform or restricted wiretap sets was studied in [9].
A common drawback of these schemes is the linear reduction in
communication rate with increasing number of channels obtained
by wiretappers.

The second group is the weakly securing network coding. This
type of coding schemes can maximize network throughput while
ensuring that eavesdropper gets no information about each packet
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[10–13]. Wei  et al. [11] developed a weakly secure network cod-
ing scheme by using a random permutation function which enables
them to map  every element in the code field to another element in
the same field. By assuming that all intermediate nodes are poten-
tial wiretappers, Du et al. [12] proposed a secure scheme that relies
only on network topology and showed that eavesdroppers cannot
acquire any information from secure message packets. A proba-
bilistic weak security for linear network coding was  investigated
in [13]. Although network throughput can be maximized, the weak
security of network code is realized at the expense of restricting
the selection of global encoding kernel.

The third group is the secure network coding schemes that
built on cryptographic hash functions. Adeli and Liu [14] devel-
oped a secure linear network coding scheme with hash functions
by imposing a restriction on the global encoding kernel, and
their scheme can successfully minimize information overhead. This
scheme was  improved by removing the restriction on the coding
kernel [15]. However, this type of schemes requires computation
of the hash values of each packet, thereby burdening network com-
munication.

The last group is the schemes that employ secret key exchanges
or secret channels [16,17]. This type of schemes first generates
locked coefficients randomly, then encrypts them with the keys
shared with the destinations, and finally adds locked coefficients to
packet header. A nonlinear secret key agreement was  considered in
[17]. This type of schemes increases not only communication delay
but also algorithm complexity.

To overcome the limitations of above schemes, we propose
here a secure random linear network coding scheme by improving
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Lima’s method of “locked coefficients” [16], and utilizing the
one-time pad encryption scheme, the Shamir’s secret sharing
scheme as well as the physical layer technique. Specifically,
the improved “locked coefficients” approach and one-time pad
encryption scheme are applied to protect source packets, while
combination of the Shamir’s secret sharing scheme and the idea of
physical layer technique enables us to transmit the secret random
data to sink nodes securely. In this way, we can obtain a perfectly
secure linear network coding scheme with a network utilization
1 − 1/n, where n is the network capacity.

The remainder of this paper is organized as follows. In Sec-
tion 2, we give a brief review on the employed notations and
general assumptions. The proposed secure linear network coding
is described in Section 3, and a corresponding security analysis
is provided in Section 4. The paper is closed with a brief conclu-
sion.

2. Preliminaries

2.1. Network model

A multicast communication network is a collection of directed
edges connecting transmitters, switches, and receivers, and usu-
ally represented by a directed graph G = (V, E), where V and E
are, respectively, the set of network nodes and the set of net-
work edges. In our model, we assume that G is acyclic and delay
free, and each directed edge has a unit capacity. The network
capacity is defined as n = min  {maxflow(s, ti) : ti ∈ VD}, where VD

is a collection of destination nodes and maxflow(s, ti) character-
izes the max-flow from a source node s to a destination node
ti ∈ VD.

A wiretap network means that there is a passive adversary who
can access at most n − 1 channels of a multicast communication
network with a capacity n. The wiretap network can be regarded as
a generalization of Ozarow and Wyner’s model of wiretap channel II
[7]. In our model, we assume that a wiretapper knows the proposed
encryption and decryption schemes.

Network coding is described as follows. Let G = (V, E) be a multi-
cast communication network with capacity n, which indicates that
the source node s sends n packets x1, x2, . . .,  xn ∈ (Fq)� to desti-
nations at each time instant. Here Fq is a finite field. The packet
transmitted through channel e ∈ E is denoted by Y(e). For any inter-
mediate node v ∈ V , let d1, d2, . . .,  d� be the edges ending at v
and ei an outgoing edge of v. According to linear network coding,
Y(ei) = ˛1Y(d1) + ˛2Y(d2) + · · · + ˛�Y(d�), where ˛1, ˛2, . . .,  ˛� ∈ Fq. If
the coefficients ˛1, ˛2, . . .,  ˛� are chosen in a random, independent
fashion, then the data transmission technology is called random
linear network coding. The random linear coding not only main-
tains most of the benefits of linear network coding, but also affords
a remarkable simplicity of design.

2.2. One-time pad and secret sharing

A cryptosystem consists of three processes: key generation
algorithm, encryption algorithm, and decryption algorithm. An
encryption scheme is called perfectly secret if for every prob-
ability distribution over the message space M,  every message
m ∈ M,  and every ciphertext c ∈ C with Pr {c} > 0, it holds that
Pr {m|c} = Pr {m}. The notation of perfect secrecy was  intro-
duced by Shannon [18], who further demonstrated that perfectly
secret encryption scheme can be achieved using one-time
pad.

The one-time pad scheme reads as follows. Assume that the
message space M,  key space K, and ciphertext space C are all equal to
{0, 1}N, where N is an integer. For a given message m = (m1, m2, . . .,

mN) ∈ {0, 1}N, choose a string k = (k1, k2, . . .,  kN) ∈ {0, 1}N according
to the uniform distribution. The encryption and decryption pro-
cesses are, respectively, Enck(m) = (m1 ⊕ k1, m2 ⊕ k2, . . .,  mN ⊕ kN)
and Deck(c) = (c1 ⊕ k1, c2 ⊕ k2, . . .,  cN ⊕ kN).

Now, we introduce the Shamir’s (t, ω) threshold scheme [19]
which will be used later to construct our secure random linear net-
work coding scheme. Consider that a trusted party T first chooses
ω distinct and non-zero elements y1, y2, . . .,  yω from a finite field
F(|F| > ω). These elements are public. Then T passes on the value yi
to user Pi(i = 1, . . .,  ω). To share a key k ∈ F with the users, T securely
selects t − 1 independent elements a1, . . .,  at−1 at random, and
finally transfers securely f(yi) to user Pi, where f (y) = k +

∑t−1
j=1 ajy

j

is a polynomial defined over F. This scheme is a perfect secret
sharing scheme, and makes an unauthorized subset of participants
impossible to access the value k.

3. The proposed scheme

The proposed secure random linear network coding scheme
consists of two parts: encryption algorithm and decryption algo-
rithm. A schematic illustration of our network coding scheme is
graphically illustrated in Fig. 1.

3.1. Encryption algorithm

(1) Decompose source message matrix. Assume that there are
n − 1 source message packets x1, . . .,  xn−1 ∈ (F2)2r. For a given suf-
ficiently large positive integer Q, choose a divisor l of 2r such that
l(n − 1)2 ≥ Q and 2r ≥ (n − 1)l.  Since the finite field F2l is isomorphic

to (F2)l, or alternatively F2l
∼= (F2)l , which indicates that the pack-

ets x1, . . .,  xn−1 ∈ (F2)2r can be viewed as vectors of (F2l )
(2r/l). For

simplicity, we  assume that these vectors are linearly independent
in space (F2l )

(2r/l). Then the message packets can be written as a
matrix

X =

⎛
⎜⎜⎜⎜⎜⎝

x11 x12 · · · x
1

2r

l
· · · · · · · · · · · ·

x(n−1)1 x(n−1)2 · · · x
(n−1)

2r

l

⎞
⎟⎟⎟⎟⎟⎠

where xij ∈ F2l (i = 1, . . .,  n − 1; j = 1, . . ., 2r
l ).

Pick n − 1 linearly independent columns from X, and denote the
indices of the selected vectors by N1 < N2 < · · · < Nn−1. As a result, we
construct an (n − 1) × (n − 1) matrix XL = (xLN1 , . . .,  xLNn−1 ) over F2l

such that det(XL − In−1) /= 0. The remaining columns of X form a
new matrix XR = (xR1, . . .,  xR((2r/l)−n+1)) in accordance with the col-
umn  ordinal from small to large.

(2) Encrypt the source message. The source generates a secret
string k ∈ (F2)r. Select a primitive element g1 from a finite field
F

2(n−1)2 l and publish it. Take k as an integer and calculate gk
1.

Obviously, gk
1 is a nonzero element of F

2(n−1)2 l and can be treated

as a string of space (F2l )
(n−1)2

. Divide the string gk
1 into n − 1 seg-

ments k1, . . .,  kn−1 ∈ (F2l )
(n−1) that are of equal length. Utilize these

vectors k1, . . .,  kn−1 to construct an (n − 1) × (n − 1) matrix G over
F2l . Due to F2l

∼= (F2)l , G and XL can be treated as (n − 1) × (n − 1)l
matrices over F2. Xoring G and XL yields a ciphertext CL = G ⊕ XL .
Multiplying XL by XR gives rise to YR = XLXR. The matrices CL and
YR constitute an (n − 1) × 2r matrix X = (CL|YR) over the finite
field F2.

(3) Protect the secret random seed k. Denote the row vectors of
matrix X by c1, . . .,  cn−1 ∈ (F2)2r and half split the vector ci(i = 1,
. . .,  n − 1), which give rise to two vectors, ciL = (ci1, . . .,  cir) and
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