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The flow field and orientation of ice particles are fundamental information to understand cloud
microphysical processes, optical phenomena, and electric-field induced orientation and to
improve remote sensing of ice clouds. The purpose of this study is to investigate the flow fields and
hydrodynamic torques of falling ice columns and hexagonal plates with their largest dimension
inclined with respect to the airflow. The Reynolds numbers range from 2 to 70 for columns and 2
to 120 for plates. The flow fields are obtained by numerically solving the relevant Navier–Stokes
equations under the assumption of air incompressibility. It was found that for the intermediate
Reynolds number the streamlines around the inclined crystals exhibit less spiral rotation behind
them than those around the stable posture. The vorticity magnitude was larger in the upstream
side and broader in the downstream than the one without inclination. For plates, a high-pressure
dome on the center of the lower basal face disappears with inclination, possibly leading to an
increase of riming there. The torques acting on the crystals have a local maximum over the
inclined angle and exhibit almost symmetric around 45° over the range of Reynolds numbers. The
torque parameterizationwas performed under pressures of 300, 500, and 800 hPa as a function of
Reynolds number and aspect ratio. It was found that the time scale of rotation for plates is smaller
than the one for columns. Furthermore, the torque formula was applied to assess alignment of
crystals along electric fields. It was found that these crystals of millimeter size require 120 kV/m
for the electrical alignment, which agrees with previous studies.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The flow fields and orientations of cloud and precipitation
particles play an important role in cloudmicrophysics. The flow
field around a single or multiple ice particles is inherently
complicated due to the shape. One of the relevant growth
processes is the collision growth of ice particles. It depends on
how a small droplet or another ice crystal is moving about the
target ice crystal, which is controlled mainly by the flow field.

Wang and Ji (2000) investigated the riming efficiencies of small
ice crystals numerically, and showed that the collision cross
sections depend on the crystal shapes and droplet sizes. The
flow field is also important for depositional growth through
which the vapor density can be locally enhanced (e.g., Ji and
Wang, 1999). This is called the ventilation effect. Another
importance for investigating the flow field and orientation lies
in understanding optical phenomena and application for
remote sensing. Westbrook (2011) reported that the scalene
columns could orient with the two prism facets laid horizon-
tally, which may be responsible for the Parry arc. The specular
reflection of hexagonal plates is often observedwith lidar in ice
clouds and mixed-phase clouds from the ground (e.g., Noel
et al., 2002; Westbrook et al., 2010) and from space (e.g., Hu,
2007). Specular reflection and the assumption on the titling of
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plates play a role in ice microphysics retrievals (Okamoto et al.,
2010). Also, ice crystals are typically aligned with the electric
fields in thunderstorms (e.g., Vonnegut, 1965; Hendry and
McCormick, 1976; Ryzhkov and Zrnic, 2006) and the alignment
has been experimentally investigated for small crystals (b30 μm)
(Foster and Hallett, 2002, 2008). Such information is potentially
useful for severe weather nowcasting (e.g., Krehbiel et al., 1996;
Schultz et al., 2011).

Numerical methods have been a powerful tool to study the
flow fields around non-spherical particles such as 2D circular
cylinders (e.g., Thom, 1933; Dennis and Chang, 1969, 1970;
Hamielec and Raal, 1969; Takami and Keller, 1969) and
axisymmetric oblate spheroids (Rimon and Lugt, 1969;
Masliyah and Epistein, 1970). In order to investigate collision
efficiency with supercooled water drops, Schlamp et al. (1975)
simulated the flow fields around falling ice columns by
assuming that such columns can be approximated by infinitely
long circular cylinders and hence reduced it to a 2-dimensional
problem. Similarly, the flow fields around falling ice plates
were studied numerically by Pitter et al. (1973), where the
hexagonal plates were approximated with thin oblate spher-
oids of various axis ratios. Ji andWang (1990, 1991) andWang
and Ji (1997) made further improvements of these earlier
studies by using more realistic ice crystal shapes for their flow
field studies. They used circular cylinders of finite length to
approximate the hexagonal ice columns and exact hexagonal
plates for ice plates, and solved the relevant Navier–Stokes
equations to obtain the flow fields. Their results cover low to
intermediate Reynolds number range and include both steady
and unsteady flow fields. Wang and Ji (1997) compared their
results with laboratory experiments for both 2D and 3D
cylinders and showed good agreement between the two,
indicating that numerical solutions of the Navier–Stokes
equations can successfully simulate the flow fields around
falling ice crystals.

Because of the non-spherical symmetry of the ice crystal
shape, the flow field changes when an ice crystal falls at a
different inclination angle with respect to the air stream. All
these previous calculations assumed that ice crystals fall with
their largest dimension, viz., the length-axis of the column or
the basal plane of the plate, oriented perpendicular to the air
flow, which is the usual fall orientation of these crystals under
steady fall assumption (e.g., page 421 of Pruppacher and Klett,
1997). However, it is well known that snow crystals do not fall
straight but the motion depends on the Reynolds number and
dimensionless moment of inertia (Willmarth et al., 1964;
Zikmunda and Vali, 1972; Field et al., 1997). Using natural
plate-like snow crystals, Kajikawa (1992) showed that the
unstable falling motions occur for the size as small as 1.23 mm
(Reynolds number of 47). Furthermore, he suggested that the
large variation of horizontal velocity plays an important role in
the aggregation of the crystals having a similar shape and size.

The quantitative evaluation of the electric field alignment
has been challenging due to our lack of knowledge of the
hydrodynamical torque acting on the crystals. Based on Stokes
flow and potential flow, Weinheimer and Few (1987) conclud-
ed that crystals of 200 μm to 1 mm tend to align under the
electric field of 100 kV/m. However, as he notes that the torque
computed by potential flow overestimates the actual one,more
accurate estimates of the torque are necessary for intermediate
Reynolds number flow. The orientation model of Klett (1995)

indicates that the average tilt angles for a small column and
plate can be more than 30° due to the Brownian motion, but
the angle rapidly decreases to 0 after reaching the size of 40 μm.
It further shows that only strong turbulence can affect the
average title angles of the larger crystals. Weinheimer and Few
(1987) and Klett (1995) both recognize that the hydrodynamic
torque distributions were not available at that time for
Reynolds number of O(1) and larger. The characteristics of
the flow fields around such inclined crystals and their impact
on cloud microphysical processes have never been systemat-
ically studied before.

The present study represents our attempt to understand the
flow characteristics and hydrodynamic torque of the inclined
falling ice crystals. We numerically solve the relevant Navier–
Stokes equations for a set of inclined ice columns and plates
falling in air to obtain the flow fields. In this paper, differences
in the flow fields between the stable and inclined orientation of
falling are described for low and intermediate Reynolds
numbers. Then, we discuss the torque characteristics and its
application to electrical alignment of crystals. The list of
symbols is given in Appendix D.

2. Physics and mathematics of the problem

In this study, we consider the incompressible flow of air
past an ice crystal whose center is fixed at the origin but whose
axis along the largest dimension forms an inclination angle θ to
the horizontal x-axis. Figs. 1 and 2 show the schematic of this
configuration. For an ice column the largest dimension is its
length (along its crystallographic c-axis) while for an ice plate
the largest dimension is the width of its basal plane (along its
crystallographic a-axis) (See Pruppacher and Klett, 1997, Chap.
3). Note that the inclination is oriented along the x–z plane (see
Figs. 1b and 2b).

Under the steady-state incompressible condition, the
momentum equation (Navier–Stokes equation) and continuity
equation are written as (see Pruppacher and Klett, 1997,
Chapter 10):

∂ujui

∂xj
¼ − 1

ρa

∂p
∂xi

þ ν
∂2uj

∂xj
2 i ¼ 1; 2; and 3ð Þ ð1Þ

∂uj

∂xj
¼ 0; ð2Þ

where ui is the air velocity (i=1, 2, and 3 corresponding to x,
y, and z axes), p is the air pressure, ρa is the air density, and ν
is the kinematic viscosity of air. The boundary conditions
are:

ui ¼ 0 i ¼ 1; 2; and 3ð Þ at the surface of the crystal ð3Þ

u3 ¼ u∞ at the inlet ð4Þ

∂u3

∂x3
¼ 0 at the outlet ð5Þ
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