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a  b  s  t r  a  c  t

This  paper  describes  an  alternative  formulation  for  the fast  multipole  method  based  on spherical  waves
decomposition.  It is  somewhat  simpler  to  implement  than  the  standard  fast  multipole  method  and  also
better  suited  at low  frequencies.  The  new  formulation  is  mainly  based  on  a technique  for  the  interpo-
lation  of  the  bistatic  radar cross  section  derived  from  the  Wacker’s  method  for  antenna  measurements.
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1. Introduction

The fast multipole method (FMM)  is widely used to reduce the
complexity of problems that requires the discretization of an inte-
gral equation. It was first proposed by Rokhlin [1] to deal with
particle simulations and for the fast solution of static integral
equations and subsequently extended to solve scalar and vector
scattering problems. It is a subject currently included in advanced
computational electromagnetics books [2,3].

The basic, two level FMM,  reduces the memory and computa-
tional complexity of the discrete integral equation from O(N2) to
O(N1.5) [4], and its multi level version, known as the multilevel fast
multipole algorithm (MLFMA), further reduces the complexity to
O(N log(N)) [2].

The FMM  is based on the decomposition of the domain into
cubic subdomains where the local field is approximated by a super-
position of plane waves, which are translated to far cubes using
appropriate operators.

A well-known problem of the FMM  is the low frequency
breakdown which is due to the loss of accuracy caused by the
computation of spherical Bessel functions of the second kind at
very low arguments [2]. Some modification of the FMM,  such as
the low frequency MLFMA  (LF-MLFMA) [2], the stable plane wave
expansion (SPW-FMM) [5] and the accelerated Cartesian expansion
(ACE) [6] have been successfully developed to solve this prob-
lem.

In this paper an alternative formulation for the two-level FMM
is introduced. Like the standard FMM  the domain is divided into
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non-overlapping cubes and near cubes interaction is treated by
direct integration of the Green’s equation. But the local fields inter-
action between far cubes is dealt with using a decomposition into
spherical waves, and the corresponding translations.

The Wacker method [7] is used to determine the coefficients of
the outgoing spherical waves for each cube. This method is used in
antenna measurement, and has been adapted to numerical prob-
lems [8], namely for the interpolation of bistatic radar cross section
(BRCS).

The next step determines the translations, i.e. the expansion
of outgoing spherical waves from a cube as incident spheri-
cal waves on non-nearby cubes. This is accomplished using a
modified Wacker method. Finally, the interaction of the incident
spherical waves with the scatterer inside each cube is com-
puted.

Currently, the spherical wave decomposition based FMM  (SWD-
FMM)  is not competitive with the standard FMM,  given the
amount of research, and hence refinement, the latter has enjoyed.
Nevertheless, it can become an interesting alternative which,
to the author’s opinion, is worth exploring. It is relatively easy
to code, the most difficult part being the implementation of
the Wacker’s method, and is less susceptible to the low fre-
quency breakdown than the standard FMM.  Although it is not
as good at low frequencies as the above mentioned modifica-
tions.

The paper is structured as follows: Wacker’s method is briefly
described in Section 2, then Section 3 gives a detailed presentation
of the alternative method. In Section 4 the method is applied to
some scattering problems. The conclusion follows in Section 5.

The engineer’s convention for time dependence ejωt is used
throughout the paper, � denotes the wavelength and k the
wavenumber.
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2. A brief description of the Wacker method

The Wacker method interpolates the BRCS by first computing
the scattering coefficients ˛(out)

slm
of the spherical waves expansion

of the outgoing field Ē(out) outside a sphere enclosing the scatterer

Ē(out) =
2∑
s=1

+∞∑
l=1

l∑
m=−l

˛(out)
slm

F̄ (out)
slm

(1)

where the summation on l can be truncated because the scattering
coefficients vanish as l→ ∞.  For scattering problems the maximum
value for l can be estimated from the scatterer’s size [9]. In the sub-
sequent formulas the truncated series up to order lx will be denoted
by

∑lx
l=1 omitting the implied s and m summations.

The tangential components of F̄ (out)
slm

on a spherical surface are
given by

z(out)
sl

X̄slm (2)

where X̄slm is the vector spherical harmonics (VSH) of indexes s, l,
m and

z(out)
1l (kr) = h(2)

l
(kr)

z(out)
2l (kr) = 1

kr

d

dr
rh(2)
l

(kr)
(3)

with h(2)
l
= jl − j yl being the spherical Hankel function of the second

kind. Using the orthonormality property of the VSH, the scattering
coefficients can be computed as

˛(out)
slm
= 1

z(out)
sl

(kr)

∮
Sr

Ē(out) · [X̄slm(�, �)]
∗
ds (4)

where Sr is a spherical surface of radius r enclosing the scatterer
and the asterisk denotes complex conjugation.

If the scattered field Ē(out) has negligible spherical waves
coefficients for l > lx, its �̂ and �̂ components are given by finite lin-
ear combinations of complex exponentials in � and � up to order
lx. Also, X̄slm(�, �) sin � is a finite linear combinations of complex
exponentials in � up to order l + 1 multiplied by ejm� .

Once the coefficients of these linear combinations are deter-
mined, formula (4) reduces to a linear combination of integrals of

the form
∫ �

0
d�

∫ 2�
0
d�ej(n�+m�).

The coefficients of the trigonometric interpolation are easily cal-
culated by means of a two-dimensional fast Fourier transform (FFT)
[10] for Ē(out) and a one-dimensional FFT for the VSH. However,
before applying the FFT to the �̂ and �̂ components of Ēs(r̄) and
X̄slm(�, �) sin �, they must be extended to � > �. Using the definition
of the VSH it is easy to see that

�̂ · X̄slm(�, �) = −�̂ · X̄slm(2�  − �, � ± �)

�̂ · X̄slm(�, �) = −�̂ · X̄slm(2�  − �, � ± �)
(5)

and the same relationships also hold for Ē(out).
Assuming that the series (1) is truncated at lx, the number of

equally spaced sampling points along each angular spherical coor-
dinate needed by the FFT, is 2lx + 1, so that their total number is
2lx (2lx + 1) + 1. This number can be nearly halved if the number
of sampling points along � is even. In this case for each sampling
point P having �P > � there is a sampling point Q with �Q = 2� − �P,
�Q = �P± �, so that the samples in P can be derived through (5) from
the samples in Q. In this way, the total number of sampling points
reduces to 2(lx + 1)lx + 1.

The number of sampling points along the extended � can be
made equal to the number of sampling points along � by adding
a single sampling point at � = �, so that the number of sampling

points becomes 2(lx + 1)lx + 2. The set of equally spaced sampling
points and their associated �̂ and �̂ versors on a spherical surface
of radius r with center c for order l will be denoted by S(l, r, c).

When lx is not known beforehand, one can start with an esti-
mated value and check that there is an integer le < lx such that

lx∑
l=le+1

∣∣∣˛(out)
slm

∣∣∣2
< �

lx∑
l=1

∣∣∣˛(out)
slm

∣∣∣2
(6)

where � is a user specified tolerance. If le = lx, then lx is increased and

the process repeated until le < lx. Note that
∣∣∣˛(out)
slm

∣∣∣2
is proportional

to the outgoing power of the corresponding wave, hence (6) can
be interpreted as a power-based truncation, i.e. the waves whose
outgoing power is small are discarded.

3. The alternative formulation

As mentioned in Section 1, the integration domain is divided
into non-overlapping cubes and each element is assigned to a cube
if its center lies in the cube. This means that there are variables
belonging to more than one cube and that elements assigned to a
cube may  not be entirely contained in the cube. A more memory
efficient implementation would assign each variable to just one
cube, but it is harder to implement.

Near cubes interaction is computed by direct integration of the
Green’s equation, and for each cube a matrix that relates the vari-
ables of the cube with its scattering coefficients is computed. These
matrices will be referred to as scattering matrices. Next, for each
translation that relates a cube couple (a, b), a matrix that gives the
coefficients of the expansion into incident spherical waves centered
in b of the outgoing spherical waves centered in a is calculated.
Obviously, such matrix merely depends on the difference p = a − b.

The translation matrices have some symmetries that allow a
significant reduction in computing time and memory usage. The
last step is the computation of the boundary conditions due to the
incident spherical waves centered at each cube.

3.1. Scattering matrices

The scattering matrix for a cube gives the scattering coefficients
of the cube’s field as a linear function of the variables Vc of the
elements belonging to the cube

¯̨ (out) =

⎡
⎢⎢⎢⎣

...

˛(out)
slm

...

⎤
⎥⎥⎥⎦ = S(ls,c) Vc (7)

where c is the cube’s center and ls is the maximum order of the
outgoing spherical waves. Its construction requires the selection of
appropriate values for r and ls with which to build the set S(ls, r, c)
used by Wacker’s integration.

For the radius the value is assigned as r = max(10 * ı, 2�) where
ı is the cube size. In exact arithmetic the final result would not
depend on the value of r as long as the corresponding sphere
encloses the cube, but with computer arithmetic the radius must
be much greater than the cube size.
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