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During the middle part of this decade, a wide variety of passive microwave imagers and
sounders will be unified in the Global Precipitation Measurement (GPM) mission to provide a
common basis for frequent (3 h) global precipitation monitoring. The ability of these sensors
to detect precipitation by discerning it from non-precipitating background depends upon the
channels available and characteristics of the surface and atmosphere. This study quantifies the
minimum detectable precipitation rate and fraction of precipitation detected for four
representative instruments (TMI, GMI, AMSU-A, and AMSU-B) that will be part of the GPM
constellation. Observations for these instruments were constructed from equivalent channels
on the SSMIS instrument on DMSP satellites F16 and F17 and matched to precipitation data
from NOAA's National Mosaic and QPE (NMQ) during 2009 over the continuous United States.
A variational optimal estimation retrieval of non-precipitation surface and atmosphere
parameters was used to determine the consistency between the observed brightness
temperatures and these parameters, with high cost function values shown to be related to
precipitation.
The minimum detectable precipitation rate, defined as the lowest rate for which probability
of detection exceeds 50%, and the detected fraction of precipitation are reported for each
sensor, surface type (ocean, coast, bare land, snow cover) and precipitation type (rain, mix,
snow). The best sensors over ocean and bare land were GMI (0.22 mm h−1 minimum
threshold and 90% of precipitation detected) and AMSU (0.26 mm h−1 minimum threshold
and 81% of precipitation detected), respectively. Over coasts (0.74 mm h−1 threshold and
12% detected) and snow-covered surfaces (0.44 mm h−1 threshold and 23% detected), AMSU
again performed best but with much lower detection skill, whereas TMI had no skill over
these surfaces. The sounders (particularly over water) benefited from the use of re-analysis
data (vs. climatology) to set the a priori atmospheric state and all instruments benefited from
the use of a conditional snow cover emissivity database over land. It is recommended that
real-time sources of these data be used in the operational GPM precipitation algorithms.

© 2012 Elsevier B.V. All rights reserved.

Keywords:
Passive microwave
Precipitation
Detection
Imager
Sounder
Emissivity
Variational retrieval

1. Introduction

Passive microwave remote sensing of precipitation from
space has advanced tremendously in the past three decades

with regard to both number and capabilities of instruments in
operation. The “golden age” of passivemicrowave precipitation
is anticipated to begin in 2014 with the launch of the Global
Precipitation Measurement (GPM) core satellite on a mission
to unify precipitation estimates from a constellation of sensors.

Early systems such as the Electrically Scanned Microwave
Radiometer (ESMR; Allison et al. (1974)) and Scanning Multi-
channel Microwave Radiometer (SMMR; (Gloersen and Hardis,
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1978)) and corresponding retrieval algorithms (e.g., Wilheit et
al. (1977), Prabhakara et al. (1986)) primarily focused on the
retrieval of rainfall over oceans due to the clear contrast between
the radiometrically cold background of the low-emissivity ocean
surface and radiometrically warm emission from falling rain at
low frequencies (below 50 GHz). The introduction of the Special
Sensor Microwave/Imager (SSM/I; Hollinger et al. (1990)), with
vertically and horizontally polarized channels at 89 GHz in
addition to the lower frequencies on SMMR allowed for det-
ection of precipitation with the detection of brightness temper-
ature (Tb) depressions due to the scattering produced by large,
precipitation sized ice particles (e.g., Wu and Weinman (1984),
Spencer (1986)). Although the relationship between the amount
of ice scattering and surface precipitation rate is dependent on
the vertical structure of the precipitation profile (Kummerow
and Weinman, 1988) and ice microphysics (Petty and Huang,
2010), it has nevertheless remained the primary source of
information regarding precipitation over land surfaces due to
their high, variable, and inhomogeneous emissivity.

While these instruments and algorithms generally perform
well for moderate to heavy rainfall during the warm season
(Ebert et al., 2007), cold-season precipitation, i.e., light rain and
snowfall in particular, remains challenging (Iturbide-Sanchez
et al., 2011) due to the weaker scattering signal and higher
contribution from the earth surface (Skofronick-Jackson and
Johnson, 2011), the emissivity of whichmay be complicated by
the presence of snow or ice on the ground (Hewison and
English, 1999). Frequencies higher than 100 GHz are particu-
larly useful for falling snow because of increasingly effective
scattering with frequency and reduced opacity of the atmo-
sphere from water vapor in cold and dry environments
(Bennartz and Bauer, 2003). An early attempt to retrieve falling
snow (Liu and Curry, 1997) used the 92 and 150 GHz channels
on the Special Sensor Microwave/Temperature-2 (SSM/T2)
sounder in combination with temperature profiles from the
ECMWF forecast model to detect snowfall over the north
Atlantic using empirically-determined Tb thresholds. Empirical
methods have since expanded to use the water vapor channels
on AdvancedMicrowave Sounding Unit-B (AMSU-B) andMicro-
wave Humidity Sounder (MHS) instruments to effectively mask
the surface (Chen and Staelin (2003), Kongoli et al. (2003),
Surussavadee and Staelin (2009)), improving detection skill.
These algorithms generally use brightness temperature thresh-
olds to detect precipitation and empirical regression or neural
networks to determine intensity within the precipitation mask.

Physically-based methods, in contrast, use radiative trans-
fer models to simulate brightness temperatures (Tbs) from
Bayesian databases of observed (Noh et al. (2006, 2009),
Kummerow et al. (2011)) and modeled (Skofronick-Jackson et
al. (2004); Kim et al. (2008)), or variationally-adjusted (Bauer
et al. (2005), Boukabara et al. (2011)) precipitation profiles.
These methods ensure physical consistency between observed
Tbs and retrieved precipitation, but require accurate models of
ice particle scattering (e.g., (Liu (2004), Kim (2006), Kim et al.
(2007), Petty and Huang (2010)) and emissivity of snow and
ice-covered surfaces (e.g., Hewison and English (1999), Weng
et al. (2001)), which are not as mature as their counterparts
regarding liquid precipitation and ocean surfaces.

The purpose of this study is to establish the minimum
precipitation rate that can be reliably detected over various
surface types and with various channel combinations that

will be available on satellites in the GPM constellation.
Because the Bayesian retrieval databases for GPM are still
under development, we instead employ a variational
approach that combines physical and empirical models,
described in Section 2 to identify precipitation using a null
hypothesis test. The Special Sensor Microwave Imager/
Sounder (SSMIS) is used as a proxy for various GPM-era
sensors and evaluated over the continental United States
using the National Mosaic and Quantitative Precipitation
Estimates (NMQ; Zhang et al. (2011)). These data sets are also
described in Section 2 and results given in Section 3. A summary
and the concluding remarks are given in Section 4.

2. Method

This section describes the retrieval theory and data set-
specific implementation details used to delineate precipitation
in this study. An example retrieval is also provided to familiarize
the reader with the output of the optimal estimation method
applied to this remote sensing problem.

2.1. General retrieval theory

A variational (optimal estimation; Rodgers (2000)) retriev-
al of non-precipitation surface and atmospheric parameters
via the inversion of a non-scattering radiative transfer model
(Elsaesser and Kummerow, 2008) has been adapted for the
data sets used in this study. Essentially, we test a null hypothesis
that an observed set of brightness temperatures y is consistent
with a reasonable set of surface and clear-air atmospheric
parameters x not including liquid or frozen precipitation. This
screening method is conceptually identical to that of Bytheway
and Kummerow (2010) and Boukabara et al. (2011) as well as
earlier versions of the Bayesian GPROF algorithm (Kummerow
et al., 2001) (more recent versions (Kummerow et al., 2011)
include non-precipitating profiles in the Bayesian database,
eliminating the need for an explicit screening step).

The retrieval minimizes a cost function:

Φ ¼ x−xað ÞTS−1
a x−xað Þ þ y−f xð Þð ÞTS−1

y y−f xð Þð Þ; ð1Þ

where xa is the a priori state vector, Sa is the state covariance
matrix, f is the forward (radiative transfer) model, and Sy is the
observation covariance matrix. The contents and formulation of
y, xa, f, Sa, and Sy depend on the input and ancillary data sets;
further details are provided in Section 2.2 Common aspects of all
retrievals are the use of Rosenkrantz (1998) and Rosenkrantz
(1999) for absorption of atmospheric gases (with improve-
ments (Tretyakov et al., 2003) to thewater vapor lines at 22 and
183 GHz) and the use of FASTEM4 (Liu et al., 2011) for
emissivity over water surfaces.

The cost function (1) is minimized iteratively, starting from
xa, using the Gauss–Newton method to find the value of x
where the gradient ofΦwith respect to x is zero. This requires
the calculation of the Jacobian matrix K at each iterative step n
by calculating the derivative of each observation (yi) with
respect to each state element (xj):

Kij ¼
∂yi
∂xj

: ð2Þ
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