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a  b  s  t  r  a  c  t

In this  paper  we  discuss  layered  multicast  (LM)  of  progressive  source  codes  using  network  coding.  LM  is
absolutely  optimal  if different  sinks  in the  network  are  satisfied  up  to their  max-flow.  Since  absolutely
optimal  intra-layer  network  strategies  might  not  exist  for  general  networks,  we  present  conditions  under
which  an  absolutely  optimal,  intra-layer  multicast  strategy  exists  for a given  network  and  how  that
strategy  may  be efficiently  constructed.  We  also  discuss  the problem  of designing  optimal  intra-layer
multicast  strategies  for general  directed  networks.
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1. Introduction

Multiple description codes can effectively utilize network
resources and is able to combat packet loss in communication
networks [1]. The network communication throughput can be
improved with network coding as compared to routing only strate-
gies [2,3]. The problem of lossy source communication using
network coding becomes very complex in its most general form
[3–5]. A practical subclass of the problem uses progressive source
codes along with carefully optimized network coding strategies for
efficient multicast of compressible sources [6,5], and is the subject
of this paper.

We start by introducing a generalization of network coding
problem, called Rainbow Network Coding (RNC) [7]. RNC recog-
nizes the fact that the information communicated to different
members of a multicast group can be different in general. Take the
scenario depicted in Fig. 1 as an example. Here, two information
bits are to be communicated from node 1 (source) to the sink nodes.
The capacity of all links is one. First, lets assume that nodes 4, 5 are
sinks. By network coding theorem [2], two bits a, b can be commu-
nicated to nodes 5, 6 simultaneously as indicated in Fig. 1(a). Here,
transcoding at relay nodes plays a crucial role. In particular, node
7 combines the two bits it receives to produce a ⊕ b (where ⊕ indi-
cates XOR operation) which enables nodes 4, 5 to recover both bits.
It is easy to verify that at most 3 bits can be communicated to the
nodes 4, 5 using routing only. Therefore, the multicast throughput
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with routing only is at most 1.5 bits per second per node, when the
set of sink nodes is T = {4, 5} as shown in Fig. 1(b).

Now, what if the set of sink nodes is T = {4, 5, 6}? Since the min-
cut (and hence max-flow) into node 6 is only one, the multicast
capacity of the network with sinks {4, 5, 6} is only one. Therefore,
only one bit of common information per second can be communi-
cated to each sink. Both examples in Fig. 1, however, are able to
communicate a total of 4 information bits to nodes 4, 5, 6. In Fig. 1(a),
nodes 4, 5 each receive 2 bits, while node 6 does not receive any (a
total of 4 bits). In contrast, in Fig. 1(b), nodes 4, 6 each receive one
bit, while node 5 receives two  bits (again, a total of 4 bits). Note
that in this case, node 4 is not satisfied up to its max-flow. We  can
clearly see from this example that all the three nodes in T cannot
be satisfied up to their max-flow and hence an absolutely optimal
LM strategy cannot be constructed.

If each atomic data entity for transmission is assigned a unique
“color”, the above problem is about delivering to each node with as
large a “spectrum” of colors as possible, without requiring all sink
nodes to have exactly the same set of colors. Due to this analogy, we
call this form of network information flow problem RNC, a general-
ization of rainbow network flow (RNF) to the case where network
coding is allowed [8].

Both examples in Fig. 1 are valid rainbow network codes. In
Fig. 1(a), the RNC involves transcoding of information at the relay
node 7 (the XOR operation). The example in Fig. 1(b), however, uses
routing only. This subclass of RNC is called RNF [8].

In this paper, we discuss the idea of layered multicast (LM)
[6,5]. In LM,  progressive or layered source codes are used for
source compression, while network coding is used to multicast
these coding layers [3]. The receivers that receive more layers are
able to reconstruct the source at lower distortions. The multicast
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Fig. 1. Multicasting common information: (a) using network coding two bits of
information can be sent to nodes 4, 5 (b) with routing only, however, two  bits can
be  sent to node 5, one bits to each of the two nodes 4, 6.

strategies, however, should respect the layered structure of the
codes, i.e., a layer should be delivered to a receiver, only if the
receiver has received all the previous layers [9]. Such restricted
reception mechanisms, however, do not lead to accurate algorithm
models that provide the absolute optimal performance [3]. The rea-
son is that nodes at critical network locations may  need to assist in
forwarding of data just for the benefit of downstream peers.

We formulate the problem of LM and define important terms in
Section 2. Since absolutely optimal intra-layer network strategies
might not exist for general networks, we discuss conditions under
which an absolutely optimal, intra-layer multicast strategy exists
for a given network and how that strategy may  be efficiently con-
structed in Section 3. The problem of designing optimal intra-layer
multicast strategies for general directed networks is investigated
in Section 4 and the paper is finally concluded in Section 5.

2. Formulation

The problem of LM is defined on a directed acyclic multi-graph
G〈V, E〉, a single server node s ∈ V, and a set of clients T ⊂ V. Each
network link e has capacity C(e) that indicates the average number
of bits that can be communicated over e without error, per net-
work use. For any integer n, the multi-graph Gn〈V, E〉 is created
by replacing each link of G〈V, E〉 with �n× C(e) 	 links, each with
capacity 1. A total of K information messages called layers are gen-
erated at s of lengths h1 = n · r1, h2 = n · r2, . . .,  hK = n · rK for some
rk ∈ R

+, k = 1, 2, . . .,  K . We  will assume a fixed large integer n is
given such that hk’s can be approximated by integers, and we deal
with Gn〈V, E〉 only. The dependance of the parameters on the block
size n is understood throughout. The use of integer link capacity is
a well known technique to simplify graph theoretical arguments
and does not restrict the generality of the derivations.

Definition 2.1 (Multicast session and multicast strategy). A multi-
cast session is identified by a tuple � k(hk) = (Gk, hk), where Gk is
a subnetwork (not necessarily a sub-tree) of G. A multicast strat-
egy � is an ordered collection of K multicast sessions, � = (� 1(h1),
� 2(h2), . . .,  � K(hK)), such that each edge e belongs to at most one
multicast session.

Multicast session k is used to multicast layer k of length hk bits.
Define Vk ⊂ V as the set of all nodes in Gk that are able to recover all
the hk bits in layer k without error.

Definition 2.2 (Subscription).  A client node t may subscribe to a
multicast session k if t ∈ Vk. Define Tk ⊂ Vk ∩ T as the set of all clients
that subscribe to layer k. A subscription strategy � is said to be
layered if and only if for all Tk, k = 2, 3, . . .,  K one has Tk ⊂ Tk−1.

Definition 2.3 (Layered flow vector). The total number of bits of
layered messages received by node t is defined as qt =

∑
k:t∈Tk

hk.

The vector (qt ; t ∈ T) is called the layered flow vector.

Definition 2.4 (Achievable layered flow vector). Define Q ∈ R
+|T | as

the union of all layered flow vectors (qt ; t ∈ T) for all layered multi-
cast strategies � .

Let (ft ; t ∈ T) be the value of max-flow to the sink nodes in T. The
maximum number of information bits that can flow from s to t is
at most ft bits per network use [2].

Definition 2.5 (Inter-layer vs. intra-layer network coding). If net-
work coding is applied to the communication of each session
separately, the layered coding strategy is called “intra-layer” cod-
ing. On the other hand, if the layers in different sessions are encoded
together, the layered coding strategy is called “inter-layer” coding.

Note that the set of achievable flow vectors using intra-layer net-
work coding is a subset of that achievable with inter-layer network
coding [3–5,10].

Definition 2.6 (Absolute optimality).  Since ft is the max-flow into
t, we must have qt ≤ ft for all t ∈ T. If (ft ; t ∈ T) ∈ Q, i.e., if there exists
a layered multicast strategy that can deliver the maximum possi-
ble flow to each client, we  say that layered multicast is absolutely
optimal and the corresponding layered multicast strategy is called
absolutely optimal layered multicast strategy.

Remark 2.1. If fmin = min
t∈T

ft then (fmin ; t ∈ T) ∈ Q, i.e., a flow vector

where all components are equal to fmin is always achievable. In par-
ticular, an absolutely optimal layered multicast strategy with one
multicast session always exists if all the sink nodes have the same
max-flow.

3. Conditions for absolute optimality of LM with intra-layer
network coding

In multi-rate multicast problems where clients have different
max-flows [6], absolutely optimal multicast strategies, as defined
in Section 2, may  not exist. We  start by conditions under which an
absolutely optimal, intra-layer multicast strategy exists for a given
network and how that strategy may  be efficiently constructed.
We then move to optimization strategies for intra-layer coding in
general networks. The following theorems show the special cases
where LM with intra-layer network coding is absolutely optimal.

Theorem 3.1. An absolutely optimal LM strategy with at most two
layers always exists if the number of sink nodes is at most two. Counter
examples with three clients can be found for which no absolutely opti-
mal LM strategy exists.

3.1. Proof of Theorem 3.1

If the sink nodes have the same max-flow (which includes the
case with only one sink as trivial special case), the absolutely opti-
mal  LM strategy has a single multicast session which consists of the
set of maximum edge disjoint paths to the receivers. We  only need
to prove the theorem for the case of two sink nodes with max-
flows f1 < f2 without loss of generality. We  know that there are a
maximum of fi edge disjoint paths to the sink nodes i, for i = 1, 2.
Let A = {a1, a2, . . .,  af1 } and B = {b1, b2, . . .,  bf2 } be two  sets of max-
imum edge disjoint paths into the sink nodes 1 and 2, respectively.
Define B∩ = {b1, b2, . . .,  bf1 } and B∗ = {bf1+1, bf1+2, . . .,  bf2 }.

Suppose for a moment that the f1 paths in A are edge-disjoint
from the paths in B*. In this case, we can construct the multicast
strategy with two multicast sessions as follows: the first layer con-
sists of the union of paths in B∩ and A, i.e., � 1 = B∩

⋃
A of size f1.

The second layer is � 2 = B* and has rate f2 − f1. Node 2 subscribes to
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