
Medical Image Analysis 27 (2016) 17–30

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Adaptive multi-level conditional random fields for detection and

segmentation of small enhanced pathology in medical images

Zahra Karimaghaloo a,∗, Douglas L. Arnold b, Tal Arbel a

a Centre for Intelligent Machines, McGill University, Montreal, Canada
b NeuroRx Research, Montreal, Canada

a r t i c l e i n f o

Article history:

Received 11 April 2014

Revised 16 June 2015

Accepted 16 June 2015

Available online 11 July 2015

Keywords:

Probabilistic graphical models

CRF

Automatic detection and segmentation

Multiple sclerosis

MRI

a b s t r a c t

Detection and segmentation of large structures in an image or within a region of interest have received great

attention in the medical image processing domains. However, the problem of small pathology detection and

segmentation still remains an unresolved challenge due to the small size of these pathologies, their low

contrast and variable position, shape and texture. In many contexts, early detection of these pathologies

is critical in diagnosis and assessing the outcome of treatment. In this paper, we propose a probabilistic

Adaptive Multi-level Conditional Random Fields (AMCRF) with the incorporation of higher order cliques for

detecting and segmenting such pathologies. In the first level of our graphical model, a voxel-based CRF is used

to identify candidate lesions. In the second level, in order to further remove falsely detected regions, a new

CRF is developed that incorporates higher order textural features, which are invariant to rotation and local

intensity distortions. At this level, higher order textures are considered together with the voxel-wise cliques

to refine boundaries and is therefore adaptive. The proposed algorithm is tested in the context of detecting

enhancing Multiple Sclerosis (MS) lesions in brain MRI, where the problem is further complicated as many

of the enhancing voxels are associated with normal structures (i.e. blood vessels) or noise in the MRI. The

algorithm is trained and tested on large multi-center clinical trials from Relapsing-Remitting MS patients. The

effect of several different parameter learning and inference techniques is further investigated. When tested

on 120 cases, the proposed method reaches a lesion detection rate of 90%, with very few false positive lesion

counts on average, ranging from 0.17 for very small (3–5 voxels) to 0 for very large (50+ voxels) regions. The

proposed model is further tested on a very large clinical trial containing 2770 scans where a high sensitivity

of 91% with an average false positive count of 0.5 is achieved. Incorporation of contextual information at

different scales is also explored. Finally, superior performance is shown upon comparing with Support Vector

Machine (SVM), Random Forest and variant of an MRF.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The task of pathology segmentation in medical imaging is a

challenging problem due, in part, to the shortage of robust shape,

size and location priors, and to the difficulty in modeling intensities

and texture patterns given their large variability over a population.

There exists a wide and diverse set of contexts, where it would be

important to first detect and then to segment (possibly very small)

pathologies among other candidates, which can be quite similar in

appearance (Baek et al., 2012; Johnson et al., 2013; Karimaghaloo

et al., 2012b). In many cases, early detection of these pathologies can

be crucial in disease staging and in assessing treatment outcome.

This includes the domain where contrast-enhancing agents, such as
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Gadolinium, are injected into patients, resulting in images where

new pathological activity, such as within cancer cells or lesions,

becomes enhanced in some imaging modalities and thereby easier

to see (Fig. 1(a)–(c)). In these contexts, the problem is more difficult

than in a typical pathology segmentation context because, for one

thing, other healthy structures are often enhanced as well, rendering

the primary task the detection of all the pathologies of interest.

These structures can vary substantially in size, location and texture

and can be as small as 3 or 4 voxels, leaving little margin for error.

In fact, failing to detect an existing pathology (i.e. False Negative –

FN) or incorrectly labeling a healthy structure as pathology (i.e. False

Positive – FP) have huge ramifications in both the diagnosis and the

assessment of treatment effect. The problem is further complicated

because the contrast between the target and background can be very

low. Some non-probabilistic approaches such as those defined in

Datta et al. (2007); He and Narayana (2002) have been proposed to

http://dx.doi.org/10.1016/j.media.2015.06.004
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Fig. 1. First row shows examples of small pathologies that required detection. Arrows

point to: (a) enhanced MS lesions in brain MRI (Karimaghaloo et al., 2012b), (b) ductal

carcinoma in breast cancer (Johnson et al., 2013) and (c) hepatocellular carcinoma in

liver cancer (Baek et al., 2012). Second row shows examples of large structure segmen-

tations in medical imaging: (d) shows different abdominal organs to be segmented

from CT (liver in cyan, spleen in green, right kidney in yellow) (Linguraru et al., 2010),

(e) shows segmentation of left ventricle (Ayed et al., 2009) and (f) shows segmentation

of a brain tumor (in red) (Subbanna et al., 2013). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article).

address this issue. However, they depend on prior segmentation of

other structures in order to remove the FPs.

In the field of computer vision, probabilistic graphical models in

the form of random fields have provided a principled way for cap-

turing neighboring data dependencies. As a result, methods such as

Markov Random Fields have been extensively used to model many

segmentation problems (Blake et al., 2011; Li and Singh, 2009). How-

ever, computation of the joint distribution becomes intractable in the

generative MRF resulting in simplifying assumptions (such as obser-

vations independencies). Furthermore, incorporation of data depen-

dent interactions is not straight forward in a traditional MRF. Hence,

discriminant variants of MRF i.e. Conditional Random Fields (CRF)

(Lafferty and et. al., 2001) have been proposed and are widely used

both in computer vision and medical imaging (Ayed et al., 2009;

Bhole et al., 2014; Boix et al., 2012; He et al., 2004; Hu et al., 2008;

Kohli et al., 2009; Kumar and Hebert, 2006; Ladicky et al., 2009;

L’ubor Ladickỳ et al., 2010; Shotton et al., 2006). However, most of

these methods are focused on the context of segmenting a central

object or a healthy structure from the surrounding tissue in a known

general region of interest (Fig. 1(d) and (e)). In these contexts, often

rich features can be extracted based on intensity or texture patterns,

that render the object distinctive from the surrounding background.

Moreover, location, size and shape models can be learned and ex-

ploited in order to further improve the segmentation results. In the

context of pathology segmentation, where the pathology of interest is

large, and there is only one in the image (e.g. brain tumors – Fig. 1(f)),

techniques have managed to exploit some prior knowledge and tex-

ture information to delineate the pathology, particularly if one can

leverage texture homogeneity within sub-regions (Bauer et al., 2011;

Hao et al., 2012; Lee et al., 2008; Subbanna et al., 2013).

There has been some work (Karimaghaloo et al., 2012a, 2010,

2012b) where adaptations of CRFs were proposed for the context

of small enhanced pathology segmentation and were shown to out-

perform standard MRF, SVM and linear regression models. While

Karimaghaloo et al. (2010, 2012b) incorporates mainly local, voxel-

level features, Karimaghaloo et al. (2012a) includes some higher order

terms but the features used are not expressive enough to characterize

the context and hence FPs still remain. Intensities at each pixel might

be distorted due to the presence of noise or other artifacts. Hence,

higher order textural patterns that are robust to local intensity dis-

tortions should be incorporated into the model to remove the FPs.

In this work, we propose an Adaptive Multi-level Conditional

Random Field (AMCRF) classifier for the task of small enhanced

pathology (commonly known as enhancing lesion) segmentation. The

proposed model (Fig. 2) works at two different levels of graphical

modeling: in the first stage, we introduce a voxel-level CRF model,

with cliques of up to size 3, to generate candidate lesions. At this

level, the classifier is tuned to be highly sensitive at the expense of

additional FP detections. Voxel-level labels are used to group together

and identify candidate lesions. In the second stage, as we are left

with only a relative few candidates, the model can now efficiently in-

corporate more computationally expensive higher order features. As

opposed to traditional hierarchical graphical models, a novel adap-

tive CRF is developed to both remove FP lesion candidates and re-

fine the boundaries of the detected lesions. To this end, both voxel-

wise interactions AND additional higher order features are optimized

together at the second stage of inference. The method extends pre-

liminary work (Karimaghaloo et al., 2013) in several ways including

exploring the effect of different texture models (independently and

combined) such as: local intensity histogram descriptors (spin im-

age) (Lazebnik et al., 2005), Rotationally Invariant Feature Transform

(RIFT) (Lazebnik et al., 2005), and Local Binary Pattern (LBP) (Ojala

et al., 2002). These textural descriptors encode intensity patterns and

gradient orientations around a reference point and are invariant to

rotation and local intensity distortions. Moreover, the relatively sim-

ple graphical structure used in Karimaghaloo et al. (2013) is replaced

with a more complete model where higher order nodes and their cor-

responding pairwise edges are included to better capture variables

interactions.

A CRF-based segmentation approach is proposed in Hao et al.

(2012) for the context of breast lesion segmentation where differ-

ent hypothesis based on all image cues are included to train a single

CRF framework. However, their framework highly relies on texture

homogeneity within sub-regions and the performance is only shown

on relatively large breast lesions. Hence, the efficacy of their approach

Fig. 2. Adaptive multi-level CRF framework. (a) Shows different stages of the algorithm. Numbers on the arrows indicate the order of the process. (b) Shows a test image. (c)

Shows the result of the voxel-level CRF together with the bounding box surrounding each candidate (stage II). (d) Shows the final results of the AMCRF model (stage IV) with the

incorporation of higher order features along with the voxel-wise interactions.
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