
Medical Image Analysis 27 (2016) 57–71

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Deformable image registration by combining uncertainty estimates from

supervoxel belief propagation

Mattias P. Heinrich a,∗, Ivor J.A. Simpson b, BartŁomiej W. Papież c, Sir Michael Brady d,
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a b s t r a c t

Discrete optimisation strategies have a number of advantages over their continuous counterparts for de-

formable registration of medical images. For example: it is not necessary to compute derivatives of the simi-

larity term; dense sampling of the search space reduces the risk of becoming trapped in local optima; and (in

principle) an optimum can be found without resorting to iterative coarse-to-fine warping strategies. However,

the large complexity of high-dimensional medical data renders a direct voxel-wise estimation of deformation

vectors impractical. For this reason, previous work on medical image registration using graphical models has

largely relied on using a parameterised deformation model and on the use of iterative coarse-to-fine optimi-

sation schemes. In this paper, we propose an approach that enables accurate voxel-wise deformable regis-

tration of high-resolution 3D images without the need for intermediate image warping or a multi-resolution

scheme. This is achieved by representing the image domain as multiple comprehensive supervoxel layers and

making use of the full marginal distribution of all probable displacement vectors after inferring regularity of

the deformations using belief propagation. The optimisation acts on the coarse scale representation of su-

pervoxels, which provides sufficient spatial context and is robust to noise in low contrast areas. Minimum

spanning trees, which connect neighbouring supervoxels, are employed to model pair-wise deformation de-

pendencies. The optimal displacement for each voxel is calculated by considering the probabilities for all dis-

placements over all overlapping supervoxel graphs and subsequently seeking the mode of this distribution.

We demonstrate the applicability of this concept for two challenging applications: first, for intra-patient mo-

tion estimation in lung CT scans; and second, for atlas-based segmentation propagation of MRI brain scans.

For lung registration, the voxel-wise mode of displacements is found using the mean-shift algorithm, which

enables us to determine continuous valued sub-voxel motion vectors. Finding the mode of brain segmenta-

tion labels is performed using a voxel-wise majority voting weighted by the displacement uncertainty es-

timates. Our experimental results show significant improvements in registration accuracy when using the

additional information provided by the registration uncertainty estimates. The multi-layer approach enables

fusion of multiple complementary proposals, extending the popular fusion approaches from multi-image

registration to probabilistic one-to-one image registration.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Medical image registration aims to find spatial correspondences

between scans of different patients, modalities, the time course of
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a disease, or response to therapy. It also forms an integral part of

many medical image analysis applications. For example, intra-patient

deformable registration can be used to relate two scans, e.g. a pre-

treatment planning scan to an intra-operative image for guiding an

intervention. Longitudinal scans can be employed to monitor treat-

ment or disease progression. Computed tomography (CT) scans are

now used widely for motion estimation in radiotherapy planning in

order to increase the accuracy of dose delivery (Weiss et al., 2007).

To study the functionality or anatomical variability of human brains,

registration-based segmentation propagation is widely used to
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automatically label structures in magnetic resonance images (MRI)

(Klein et al., 2009). It can be used to measure the volume and shape

of anatomical structures in the human brain.

Image registration algorithms are generally based on three com-

ponents: a similarity metric, a transformation model, and an opti-

misation strategy. A large variety of approaches have been proposed

for the medical image domain over the past few years (see (Sotiras

et al., 2013) for an overview). Different assumptions have been made

to model these three components to obtain robust, accurate and also

computationally efficient algorithms. In the following, we discuss

four challenges, which are, in our opinion, prevalent in current ap-

proaches.

First, the similarity metric measures the data affinity and can as-

sume many different forms depending on the medical application

and modality. Ideally, the choice of the similarity measure is affected

by neither the chosen transformation model nor the employed opti-

misation technique. In practice, however, this is often not the case,

since gradient-based optimisation techniques require the similarity

term to be (at least first-order) differentiable.

Second, the transformation model may restrict the deformation

between two images either to obey a certain physically motivated

model (for example finite element models (FEM) (Ferrant et al.,

2000)) or to be well approximated by a particular mathematical

model (such as free-form transformations (Rueckert et al., 1999)).

Due to its simplicity, most common registration algorithms define

a transformation model on a regular, equally spaced grid. However,

sparsely or irregularly spaced models, which have been e.g. presented

by Schnabel et al. (2001), Rohde et al. (2003) (with spline basis func-

tions), Glocker et al. (2010) (triangular mesh) and Popuri et al. (2013)

(FEM), might in many cases provide a more realistic model of real

physical motion, in particular when the smoothness of deformations

varies across the image domain.

Third, the chosen optimisation strategy impacts the space of ob-

tainable deformation vectors. Continuous optimisation approaches

yield excellent results for subtle sub-voxel changes across scans,

which is important for the analysis of longitudinal brain development

(Ashburner and Ridgway, 2012). A disadvantage is that they are sus-

ceptible to local minima, especially in the presence of large, complex

motions.

Fourth, a further limitation of the majority of current methods is

that they only estimate the most probable transformation (the maxi-

mum a posteriori solution). However, quantifying the uncertainty dis-

tribution of a registration can provide improvements with respect to

the immediate goals, such as segmentation or motion vector estima-

tion, as well as give a confidence measure of the generated results.

Recent work (Shekhovtsov et al., 2008; Glocker et al., 2008a; Hein-

rich et al., 2013a; Cobzas and Abhishek, 2011), has demonstrated a

number of advantages of discrete optimisation techniques over the

more commonly used continuous counterparts: they do not neces-

sitate the computation of derivatives of the image similarity metric;

they are computationally efficient; the space of displacements can be

defined to capture a large range of deformations; and, under certain

circumstances, local minima can be avoided. For a more in-depth dis-

cussion on optimality guarantees see Komodakis and Tziritas (2007)

for linear programming and Felzenszwalb and Zabih (2011) for belief

propagation techniques. Discrete approaches are, however, restricted

to a quantisation of displacement vectors, which causes limits on

the achievable accuracy. An extended review of deformable medical

image registration using Markov random field formulations can be

found in Glocker et al. (2011).

In this paper, we further contribute to medical image registra-

tion based on graphical models by introducing three new concepts,

which have to date not been deeply explored. First, we make use of

a more flexible image representation using supervoxel graphs. This

is, to the best of our knowledge, the first time that multiple com-

plementary layers have been used, which enable us to represent the

complex nature of 3D deformations with spatially varying smooth-

ness. Second, the probability (inversely, uncertainty) of a large set

of potential displacements is calculated for our graphical model us-

ing belief propagation (with the min-sum algorithm). Supervoxels are

inter-connected using a tree, which enables us to obtain marginal en-

ergies for every displacement and to regularise the displacement field

using pair-wise interactions. Third, the complementary information

from multiple supervoxel layers is combined on a voxel-wise level.

A mode seeking algorithm over all potential (and probable) displace-

ments for every voxel is used to find subvoxel accurate motion vectors

(or the most likely fusion of many potential segmentation labels).

This paper builds upon previous work by the authors including

the use of a graphical model that represents the image domain by a

number of overlapping layers of supervoxels, which are connected

by a minimum spanning tree (MST) (Heinrich et al., 2013b); the

optimisation of the MST model using belief propagation (Heinrich

et al., 2013a) and (Heinrich et al., 2012) and a similar calcula-

tion of min-marginal probabilities over all potential displacements

(Heinrich et al., 2013d). Here, we unify those approaches, extend the

motion estimation by the mean-shift mode seeking algorithm, and

report substantial additional experimental validation.

2. Background

Supervoxel: Superpixel clustering describes the parcellation of

the image domain into perceptually meaningful regions, which group

pixels based on their appearance and spatial closeness. Ren and Ma-

lik, 2003 introduced the term superpixel, but previous work, such

as watershed segmentation, have followed the same principle. Be-

cause they significantly reduce computational complexity, they have

attracted a lot of attention in a range of image analysis tasks includ-

ing optical flow estimation (Lei and Yang, 2009; Zitnick and Kang,

2007); and image segmentation (Shi and Malik, 2000). In medical

imaging, 3D supervoxels have been introduced relatively recently for

cell segmentation by Lucchi et al. (2012). Brain tumour segmentation

has been addressed by Wang and Yushkevich (2013) using supervoxel

matching without regularisation, following the superparsing frame-

work of Tighe and Lazebnik (2013). Another recent approach by Tang

and Hamarneh (2014) used supervoxels in an aggregation step for

random walk registration. In Felzenszwalb and Huttenlocher (2006)

a uniform hierarchical grouping of nodes was used to improve the

convergence of belief propagation, while Willsky (2002) proposed or-

ganised trees of multiple scales in a pyramid form to solve large scale

MRF problems.

Uncertainty estimates: Probabilistic registration methods based

on continuous optimisation have been used to estimate the spa-

tial variation of the displacements close to a local optimum to im-

prove deformable registration based on locally adaptive smoothing

(Simpson et al., 2011) and in order to boost classification accuracy

(Simpson et al., 2013). This Bayesian framework was extended by

Wassermann et al. (2014) for large diffeomorphic mappings. Iglesias

et al. (2013) use uncertainty of registration parameters to improve

segmentation propagation by using multiple probable warps from

atlas to target volume. Registration uncertainties are also used in

Risholm et al. (2013) to estimate the cumulated dose delivery in

radiotherapy and in Kybic (2010) to estimate registration accuracy.

The limitation of these approaches, based either on bootstrapping

(Kybic, 2010), variational Bayes (Simpson et al., 2012), or Monte Carlo

sampling (Iglesias et al., 2013; Risholm et al., 2013), is that a dense

sampling of the uncertainty of the displacement space is impossible

(or at least extremely computationally expensive) and distributions

with multiple local optima cannot be easily dealt with. The AQUIRC

method (Datteri and Dawant, 2012) has been used to estimate reg-

istration uncertainty (and thus accuracy) using transitivity errors

in registration circuits (at least four pair-wise registrations) and
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