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a b s t r a c t

Deformable models integrate bottom-up information derived from image appearance cues and top-down
priori knowledge of the shape. They have been widely used with success in medical image analysis. One
limitation of traditional deformable models is that the information extracted from the image data may
contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we
introduce a new family of deformable models that are inspired from the compressed sensing, a technique
for accurate signal reconstruction by harnessing some sparseness priors. In this paper, we employ spar-
sity constraints to handle the outliers or gross errors, and integrate them seamlessly with deformable
models. The proposed new formulation is applied to the analysis of cardiac motion using tagged magnetic
resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the
poor image quality. Our new deformable models track the heart motion robustly, and the resulting
strains are consistent with those calculated from manual labels.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Physics-based deformable models and their variations have
been studied extensively in recent decades and widely used in
computer vision, computer graphics and medical image analysis
(Metaxas, 1992; McInerney and Terzopoulos, 1996; Metaxas,
1996; Nealen et al., 2006b). They are able to solve diverse types
of problems, such as, but not limited to, image segmentation (Kass
et al., 1988), image registration (Rueckert et al., 1999; Shen and
Davatzikos, 2002), shape reconstruction (Terzopoulos et al.,
1988; Metaxas and Terzopoulos, 1993), and motion analysis
(Metaxas and Terzopoulos, 1991; Paragios and Deriche, 2000).
The name ‘‘deformable models’’ is derived from the nonrigid body
mechanics, which describes how elastic objects respond to applied
forces. Starting from an initial shape, the model is usually de-
formed by two types of forces, i.e., internal and external forces.
The external force drives the model to fit the observations, while
the internal force constrains the geometric flexibility of the shape.
For examples, in the image segmentation problem, the external
force computed from the image intensity drives the model to the
estimated boundary, while the internal force keeps the boundary
smooth. In the motion analysis (e.g., cardiac motions (Park et al.,
1996; Haber et al., 2000; Hu et al., 2003; Chen et al., 2008; Wang

and Amini, 2012)) and the shape manipulation problems (Nealen
et al., 2006b), control points are employed as the external force to
drive the model, and the internal force maintains the smoothness
and preserves shape details. The control points are tracked along
a motion sequence, and then an initial model is deformed to fit
the control points in each following frame. This is often measured
by the distances between the control points and the corresponding
points on the initial model. In fact, in the context of motion analy-
sis and shape manipulation, many previous methods (Sorkine
et al., 2004; Zhou et al., 2005; Yan et al., 2007; Wang et al.,
2008a) use Euclidean distance or L2 norm as the distance metric
for penalty functions. This assumes intrinsically that the errors of
the target points follow a Gaussian distribution with small
variances. Nevertheless, this is not always true in practice. Since
the control points are usually from automated detections, they
may contain not only Gaussian noise, but also some gross errors
or outliers due to the erroneous detection. Therefore, the accuracy
of the traditional deformable models depends heavily on the
accuracy of the control point detection.

In this paper, we focus on improving the robustness of
traditional deformable models, particularly for the problems
of cardiac motion analysis. Inspired by the robust recovery power
of the compressed sensing approach (Donoho, 2006; Candes
et al., 2006), we propose a new class of deformable models using
sparse regularization. Recent research in compressed sensing
shows that using an L1 norm can dramatically increase the
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probability of accurate signal recovery, even when there are both
sparse outliers and moderate Gaussian noise (Candes and Tao,
2006). Thus, we design a robust deformable model by integrating
seamlessly an L1 norm regularization with a modified Laplacian
deformable model (Sorkine et al., 2004; Yu et al., 2013). This new
model is able to handle outliers or gross errors. In addition, it is de-
signed as a convex optimization problem, and can be efficiently
solved within a constrained solution space. However, when the
variances of the Gaussian noise are large, solely using the L1 norm
may cause overfitting problems due to its nature of pursuing the
sparse structure (Candes et al., 2005). Therefore, we propose a
deformable model using hybrid norm regularization that is able
to handle both the Gaussian errors and gross errors. We also gen-
eralize these two models in a unified formulation, named as sparse
deformable models.

In the following section, we discuss the relevant work of
deformable models and compressed sensing. Our proposed sparse
deformable models (SDM) are presented in detail in Section 3. In
Section 4, we validate our models on a clinically important and
challenging problem, i.e., the left ventricle (LV) motion analysis
in mouse cardiac tagged MRI. Section 5 presents experimental re-
sults demonstrating the robustness of our models on mouse heart
motion tracking even with inaccurate results of control point
detection. The last section draws conclusions on model advantages,
and discusses directions of future work.

2. Related work

2.1. Deformable models

With the success of active contour models (Kass et al., 1988),
many methods have been proposed to improve deformable mod-
els. Most of the work focuses on either internal force or external
force. In this section, we introduce some relevant papers in these
two aspects.

Internal force usually enforces the smoothness characteristics of
deformable models, such as the local deformation similarity. An
unconstrained deformable model may easily result in unrealistic
shapes due to the weak or misleading image cues. Therefore, the
internal force is critical for the robustness. The global parametric
models (e.g., deformable superquadratics) were proposed to build
models based on a few global shape parameters (Terzopoulos
and Metaxas, 1990; Bardinet et al., 1996). Although these models
reduce the degree of freedom dramatically, they have difficulty
to present the shape details. The local geometry properties can
be used as constraints to solve these problems. For examples,
splines were used on image deformation to constrain the
smoothness of the deformation field (Tustison and Amini, 2006).
Piecewise-smooth finite element model (FEM) was employed to
present the deformable boundary (Duan et al., 2009b; Duan
et al., 2010), which achieved real-time myocardial segmentation
in both ultrasound and MRI data. The Laplacian coordinates (Sorki-
ne et al., 2004) have been also a well-known measurement for the
local similarity. Comparing with spline- and FEM-based methods,
Laplacian coordinates allow more flexible shape representation.
Sorkine et al. (2004) employed it to constrain the smoothness
and local similarity of the 2D mesh deformation in shape editing.
Shen et al. (2011) decomposed the Laplacian coordinates into
components in the perpendicular and tangential directions, to for-
mulate a detail-preserved internal force. In this paper, we adapt
the traditional Laplacian coordinates in a new setting of 3D volu-
metric and meshless deformable models to enforce the smoothness
and local shape similarity.

External force matches the model to the observations derived
from the image appearance. They are usually categorized as

short-range and long-range forces. The short-range forces are
defined based on the local information in a small neighborhood.
For example, in segmentation problems, they drive the contour
to the estimated boundary. The boundary may be defined by the
intensity, gradient change, or high response of boundary detectors
(Kass et al., 1988). In registration problems, the source image is
deformed to match the target image according to the appearance
similarity (Duan et al., 2009a). The pixels are matched based on
textures in their neighborhoods. The long-range forces deform
the model to match pre-calculated landmarks (Terzopoulos and
Metaxas, 1991) or satisfy model priors (Cohen and Cohen, 1993).
Region appearance features have also been used (Zhu and Yuille,
1996; Jehan-Besson et al., 2003; Huang and Metaxas, 2008) to aug-
ment the deformable models by leveraging the image intensity sta-
tistics. They discriminate the inside and outside region based on
their intensities and textures. Recently, dictionary learning is also
used to learn appearance characters (Huang et al., 2013a; Huang
et al., 2013b). Each pixel is classified into different regions based
on their reconstruction residues under different dictionaries. Our
deformable model uses control points as the external force, which
is a natural choice for cardiac motion analysis.

2.2. Robust shape priors

Most deformable models assume that there is no outlier or
gross error on the detected landmarks, while such error are very
common due to the image noise or weak appearance cues. Statisti-
cal shape models, such as active shape models (Cootes et al., 1995)
and their variants, can effectively handle outliers using shape
priors. Some of them detect and eliminate the outliers explicitly
before the deformation. Duta and Sonka (1998) proposed a method
to detect outliers by hypothesis testing based on the point distribu-
tion model. The detected outliers are removed or replaced based on
the mean shape of the model. Prastawa et al. (2004) proposed to
detect the abnormal regions by registering with a standard atlas.
The regions largely different from the normal intensities are deter-
mined as outliers. Lekadir et al. (2007) used a local shape dissimi-
larity measure, which is invariant to scaling, rotation and
translation, to detect the outliers, and then displaced them based
on the local valid points. Other researchers aimed to reduce the
effect of the outliers during the model deformation. Rogers and
Graham (2006) evaluated M-estimator, least median of squares
and random sample consensus (RANSAC) (Fischler and Bolles,
1981) to handle outliers in active shape models. RANSAC showed
the best performance in the quantitative evaluation. Davatzikos
et al. (2003) utilized wavelet transformation to build a hierarchical
shape model to improve the local robustness. The low-frequency
bands carry global shape information, and the high-frequency
bands serve as local smoothness constraints. Besides shape priors,
image atlas-based methods also naturally have the properties of
handling segmentation errors (Shiee et al., 2011). Priors can also
be based on data-specific properties, e.g., the relative positions of
multiple components, which are modeled by formulating the rela-
tion explicitly (Paragios, 2002) or learning shape priors from exam-
ples (Paragios, 2003).

Recently, compressed sensing methods have been intensively
investigated. These methods aim to reconstruct a signal that is
known to be compressible with certain transformation based on
sparse measurements. Such sparse methods have been widely used
in computer vision and image processing communities to deal with
gross errors or outliers. Particularly, the sparse constraints have
been employed to model shape priors effectively (Zhang et al.,
2012a; Zhang et al., 2012b) and register shapes robustly (Hontani
et al., 2012). In their settings, most of the control points generated
from point detectors are roughly accurate, while a small number of
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