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In this work, we present a review of the GILTT (Generalized Integral Laplace Transform
Technique) solutions for the one and two-dimensional, time-dependent, advection–diffusion
equations focusing the application to pollutant dispersion simulation in atmosphere, assuming
both Fickian and counter-gradient models for a wide class of problems. For sake of
completeness, we also report numerical simulations and statistical comparisons with
experimental data and results of literature.
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1. Introduction

In the last years, special attention has been given to the
issue of searching analytical solutions for the advection–
diffusion equation in order to simulate the pollutant disper-
sion in the Planetary Boundary Layer (PBL). The solution of the
advection–diffusion equation can be written either in integral
form and series formulations, with the main property that
both solutions are equivalent. At this point we are aware of
the existence of many closed-form solutions in the literature.
Among them we mention the works of Rounds (1955), Smith
(1957), Scriven and Fisher (1975), Demuth (1978), van Ulden
(1978), Nieuwstadt and de Haan (1981), Tagliazucca et al.
(1985), Tirabassi (1989), Tirabassi and Rizza (1994), Sharan
et al. (1996), Lin and Hildemann (1997), Tirabassi (2003). All
these solutions are valid for very specialized practical
situations with restrictions on wind and eddy diffusivities
vertical profiles. Recently appeared the ADMM (Advection
Diffusion Multilayer Method) approach (Costa et al., 2006)
that solves the multidimensional advection–diffusion equa-
tion for more realistic physical scenario. The main idea relies
on the discretization of the PBL in a multilayer system, where
in each layer the eddy diffusivity and wind profile assume
averaged values. The resulting advection–diffusion equation
in each layer is then solved by the Laplace Transform tech-
nique. For more details about this methodology see the
revision work by Moreira et al. (2006a). In this work, we
focus our attention to the state-of-the-art now for the series
solution, of the advection–diffusion equation, known in the
literature as the GILTT (Generalized Integral Laplace Trans-
form Technique) approach. The main idea of this methodol-
ogy comprehends the steps: expansion of the concentration
in series of eigenfunctions attained from an auxiliary
problem, replacing this equation in the advection–diffusion
equation and taking moments, we come out with a matrix
ordinary differential equation that is solved analytically by
the Laplace Transform technique.

To reach our objective, we organize the paper as follows:
in Section 2, we report the advection–diffusion equation
solutions by the GILTT approach. In Section 3, we present the
solution for counter-gradient turbulence closure. In Section 4,
we report the turbulent parameterizations. In Section 5, we
display the wind profile used in the simulations. In Section 6,
we display numerical simulations and statistical comparisons
with experimental data and results of literature. Finally, in
Section 7, we make mathematical analysis and discussion of
the results performance attained by this methodology in the
conclusions.

2. The advection–diffusion equation and the GILTT method

In the sequel, we report the GILTT solution for the advection–
diffusion equation for the problems: one-dimensional time-
dependent equation, two-dimensional steady-state equation,

two-dimensional steady-state equation with deposition at the
ground, two-dimensional time-dependent equationwith advec-
tion in the vertical direction and two-dimensional time-
dependent equation with longitudinal diffusion and vertical
velocity.

2.1. The time-dependent one-dimensional advection–diffusion
equation

Let us consider the following equation:

Ac
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¼ A

Az
Kz

Ac
Az

� �
; ð1Þ

for 0bzbh and tN0, subject to the boundary conditions of
zero flux at the ground and PBL top, and a source with
emission Q at height Hs:

Kz
Ac
Az

¼ 0 at z ¼ 0;h ð1aÞ

c z;0ð Þ ¼ Qδ z−Hsð Þ at t ¼ 0 ð1bÞ

where c represents the crosswind integrated concentration, h
is the PBL height, Kz is the eddy diffusivity variable with the
height z (Kz=K(z)) and δ is the Dirac delta function. The
diffusive term in the Eq. (1) is rewritten using the chain rule.
This procedure was used by Wortmann et al. (2005) and
allows a simplification of the auxiliary problem, whose choice
is made as customary in the use of GITT (Generalized Integral
Transform Technique) due to Cotta and Mikhaylov (1997).
Then, we can write:

Ac
At

¼ Kz
A
2c

Az2
þ K V

z
Ac
Az

: ð2Þ

The formal application of GITT begins with the choice of
the following auxiliary Sturm–Liouville problem:

WW
n zð Þ þ λ2

nWn zð Þ ¼ 0 at 0bzbh ð3aÞ

W
0
n zð Þ ¼ 0 at z ¼ 0; h; ð3bÞ

which has the well-known solution Ψn(z)=cos(λnz), where
λn=nπ /h (n=0,1,2,…).

Next, we expand the concentration c(z,t) in the truncated
series as follows:

c z; tð Þ ¼ ∑
N

n¼0
c̄n tð ÞWn zð Þ: ð4Þ

To determine the unknown coefficient c–n(t) we replace
Eq. (4) in Eq. (2). This procedure leads to:
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