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ABSTRACT: The two different numerical approaches for solving the nonlinear ship wave problem are discussed in the present 
paper. One is based on a panel method, which neglects the viscous effects. The other is based on a finite volume method, which 
take into account the viscous effects by solving RANS equations. Focus is laid upon on the advantages and disadvantages of 
two methods. The developed methods are applied to calculating the flow around Series 60 hull to validate the performance of 
the present nonlinear methods. Although the two methods employ quite different numerical approaches, the calculated wave 
patterns from both methods show good agreements with the experiments. However the potential method simu-lates the global 
wave pattern accurately, while the viscous method shows better performance for the local wave prediction near a ship. 
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INTRODUCTION 
 

The steady ship wave problems have significant 
importance in marine hydrodynamics. The wave patterns 
generated by an advancing ship have large influence on the 
total resistance of a ship. In addition the wave patterns are 
very sensitive to the details of hull form design and are easily 
affected by relatively small modifications. Consequently, the 
capability to predict the wave pattern accurately for a given 
hull form is an important asset in the initial stage of hull form 
design. Therefore the effects of a free surface must be taken 
into account in the relevant methods for solving ship wave 
problems. The primary difficulties of ship wave problems 
arise from the nonlinear behavior of the free surface 
condition, i.e. the boundary condition must be applied on the 
wavy free surface, which is not known a priori. 

The standard approach to the nonlinear ship wave 
problem may be divided two distinct methods; either the 
inviscid flow method or viscous flow method. Though the 
inviscid flow methods don’t consider the interaction 
between the viscous and the wavemaking components, 
those methods are widely used in marine hydrodynamics 
because of their robustness and computational efficiency. 
The inviscid flow methods may be categorized in two 
general groups, i.e. the panel/boundary element methods 
(Raven, 1996; Janson, 1997; Kim et al., 1998) and the field 
methods (Farmer et al., 1994) that solve the Euler equation. 

The formers have been proven to be the most effective for 
obtaining fast solutions of nonlinear ship wave problems. At 
present, panel methods already have reached the maturity for 
the design tool. And from the numerical point of view, the 
field methods that solve the discretized Euler equations have 
inherently the same numerical difficulties of the following 
viscous flow methods. As a candidate for the inviscid flow 
calculation the panel/boundary element methods are believed 
to be better than the field methods with regards to the 
applicability and computational efficiency of the solution 
method. Therefore the field methods solving Euler equations 
are not further considered here. 

The viscous flow methods can be divided into two 
categories based upon the coordinate system in which the 
governing equations are solved: interface-capturing methods 
and interface-tracking methods. The interface-capturing methods 
such as the volume of fluid approach (Schumann, 1998) make 
use of an inertial coordinate system. In all these approaches a 
grid fixed in time is used and the free surface is allowed to 
move between grid points. Thus, tracking the free surface and 
imposing the boundary conditions on it are not trivial in these 
approaches. On the other hand, the interface-tracking method, 
which is also called moving grid approach, makes use of a 
non-inertial coordinate system and the free surface coincides 
with a grid surface exactly through the calculations. Thus, 
imposing the boundary conditions on the free surface as well 
as tracking the free surface in time is straightforward. However, 
these approaches involve grid regeneration at every iteration 
step, which may not be possible for all cases. If the breaking 
and overturning waves, which are not modeled in panel 
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methods either, are of no primary interest, the interface-tracking 
methods are more accurate than the interface-capturing 
methods with regards to predicting the ship-generated wave 
patterns. The interface-tracking methods (Muzaferija and 
Peric, 1997) are therefore adopted in the present work. 

Another issue remains for steady nonlinear ship wave 
problem, i.e. whether a steady-iterative or a time-dependent 
solution method is to be adopted in the numerical methods 
for handling the free surface flow. Firstly, the time-dependent 
solution methods have the advantage with regards to 
applicability to truly unsteady free surface problems. But it 
should be pointed out that the steady solution is of primary 
interest for the nonlinear ship wave problem. From this point 
of view the discussion will be given below. 

For the time-dependent approaches, the simple and 
natural formulations of the time-stepping procedure are 
possible. Most time-dependent approaches reach the steady 
state by starting from the rest and accelerating a ship to its 
final speed. If the time-dependent solution methods retain the 
time accuracy in each time steps, much additional flow 
information besides the steady solution can be obtained. 
Another advantage of the time-dependent approach is the fact 
that the initial boundary conditions can be easily given, 
especially for the viscous methods. This is why most viscous 
methods for a nonlinear ship wave problem adopt the time-
dependent approach. 

As opposed to these advantages, the computing demands 
of relevant methods are significantly excessive before a steady 
solution is reached. Another difficulty is present in the time-
dependent approach, i.e. the non-reflective outer boundary 
conditions have to be specified. Otherwise the reflective waves 
will spoil the solution and delay the convergence to a steady 
state. Some damping zone techniques (Hino, 1994; Hinatsu, 
1992), which are adopted in the present viscous method, 
require the more computing demands due to the additional 
computational domain for the damping zone. 

If the steady solution is of primary interest, steady-
iterative solution methods are believed to be more efficient. 
In the steady-iterative solution methods, the steady solution is 
found in an iterative procedure starting from the initial guess 
of the solution. Especially, for the potential methods the good 
initial guess is available in order to start the iterative 
procedure. There have been various linear solutions (Raven, 
1988) approximating the nonlinear ship wave problem. 
Following the discussion of Raven (1996), the steady-
iterative solution method is adopted for the potential method 
in the present study. 

As mentioned previously, the wave pattern generated by 
an advancing ship have a dominant effect on the flow around 
her. In 1994, there has been a workshop (Kodama, 1994) for 
comparison of the numerical methods that can deal with a 
free surface flow. In this workshop, Series 60 hull form was 
used for comparative computations. The numerical results 
with various potential and viscous methods are collected and 
compared with the experiments. Recently a number of 
numerical methods for the nonlinear ship wave problem have 
been developed and updated since the previous workshop. 
The present paper is initiated from the questions that how 
accurately the state-of-the art numerical methods at present 

can predict the wave pattern generated by a ship and how 
much the viscosity of the fluid has influence on the stern 
wave. Therefore the present paper lay a primary emphasis on 
the capability for predicting the wave patterns around a ship 
in the potential and viscous methods. The evaluation and 
validation of both methods will be performed by the detailed 
comparison at the various longitudinal and transverse cuts 
with the extensive experimental data by Toda et al. (1991). 

The rest of the paper is organized as follows: In section 2, 
the potential method is described briefly. In section 3, the 
viscous method with primary emphasis on the numerical 
method is presented. In section 4, results and discussions are 
presented and in section 5, conclusions are drawn. 
 
 
 
POTENTIAL METHOD 
 
Governing equations and boundary conditions 
 

A right-handed Cartesian coordinate system illustrated 
in Fig. 1 is used throughout the analysis. The origin is 
chosen at the intersection of the midship and the still water 
plane. The x-axis is positive in the downstream direction, 
the y-axis is positive to the starboard side of a ship and the 
z-axis is positive up-wards. The incoming free stream is 
parallel to the x-axis and moves to the downstream 
direction. In the following equations, all the quantities are 
nondimensionalized by ship speed U and ship length L and 
the density of a fluid. As mentioned in section 1, the wave 
breaking is not regarded in the present approach. Thus the 
free surface shape will be described as a single-valued 
function of the horizontal coordinates, z = h(x, y). 

In potential flow, it is assumed that the fluid is inviscid 
and incompressible and the motion is irrotational. 
 

 
 
Fig. 1 Coordinate system. 
 

Then the flow can be described by a velocity potential φ, 
which satisfies Laplace equation, 
 

2 0ϕ∇ = .           (1) 
 

In addition we have the Bernoulli equation the constant C 
being equal throughout the domain. 
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