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ABSTRACT: In this paper, we focused on computing the higher-harmonic components of the transmitted wave passing over a 
submerged circular cylinder to show that it is causing a horizontal negative drift force. As numerical models, a circular 
cylinder held fixed under free surface in deep water is adopted. As the submergence of a circular cylinder decreases and the 
incident wavelength becomes longer, the higher-harmonic components of the transmitted wave starts to increase. An increase of 
the higher-harmonic components of the transmitted wave makes the horizontal drift force be negative. It is also found that the 
higher-harmonic amplitudes averaged over the transmitted wave region become larger with the increase of wave steepness and 
wavelength as well as the decrease of submergence depth. 
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INTRODUCTION 
 

According to potential flow theory and the so-called 
d’Alembert paradox, there is no force acting on a submerged 
body in a steady state irrotational flow of an inviscid 
incompressible fluid. In such a case, only a viscous drag 
force can occur. For unsteady potential flows, such as caused 
by waves, however, a mean drift force can be induced on a 
submerged body. In particular, it has been long known that a 
negative drift force may be caused on submerged bodies by 
surface gravity waves of sufficient steepness, i.e., 
nonlinearity; hence, this wave-induced drift force is due to 
higher-order effects. Using conformal mapping, Dean (1948) 
thus found that a submerged circular cylinder does not reflect 
waves to leading order of steepness. Ursell (1950) confirmed 
this result by deriving the complete linear solution using a 
multipole expansion method. Following Ursell’s approach 
and estimating second-order effects from linear results, 
Ogilvie (1963) showed the existence of a mean second-order 
vertical force, but found that the horizontal mean force 
vanished to second-order. Using a Stokes expansion, Vada 
(1987) solved the second-order diffraction problem in the 
frequency-domain, but could not calculate all the terms of the 
mean horizontal force. Longuet-Higgins (1977) observed in 
experiment that a freely moving, neutrally buoyant, 
submerged cylinder experienced a negative drift force, 

causing it to move towards the wavemaker. He attributed this 
force mostly to wave breaking and, to a lesser degree, to the 
second-harmonic component of the transmitted wave. This 
conclusion, however, is not corroborated by Miyata et al. 
(1988) and Inoue and Kyozuka (1984) measurements, who 
both found that, as the cylinder was moved closer to the free 
surface, causing more intense wave breaking, the negative 
horizontal drift force was actually reduced and ultimately 
even changed sign. 

A number of two-dimensional, fully-nonlinear, inviscid 
time-domain computations have been proposed, to estimate 
strongly nonlinear effects caused by waves passing over 
submerged bodies of small equivalent diameter but large 
dimension in the transverse direction, with respect to 
wavelength, such as pipelines. Using the mixed Eulerian-
Lagrangian method, Cointe (1989) calculated higher-order 
harmonic forces and wave transmission coefficients on a 
submerged cylinder, in a fully-nonlinear potential flow model, 
but did not calculate the horizontal drift force. Torum and 
Gudmestad (1990) computed particle trajectories and 
Lagrangian transport caused by steep waves, represented by 
exact streamfunction Stokes waves, over a submerged cylinder, 
in a space-periodic version of Grilli et al. (1989) fully-
nonlinear potential flow model. Liu et al. (1992) applied the 
Higher-Order Spectral Method (HOS) to this problem and 
compared computations with analytical results and 
experimental observations. They also used exact deep-water 
Stokes waves as initial conditions and specified periodic 
conditions for upstream and downstream boundaries,  
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a requirement of the HOS method. 
In this paper, we establish the origin of the negative drift 

force caused by steep waves on a submerged cylinder, by 
similarly performing two-dimensional (2D) Fully Nonlinear 
Potential Flow (FNPF) simulations in the time domain. In the 
simulations, we use the most recent version of the model 
originally developed by Grilli et al. (1989), with improvements 
and additions by Grilli and Subramanya (1996) and Grilli and 
Horrillo (1997) (hereafter referred to as 2D-FNPF model). 
Unlike earlier studies, our computations are not space-
periodic but feature the generation of exact fully nonlinear 
periodic incident waves at one extremity of a “Numerical 
Wave Tank” (NWT), as well as wave absorption/radiation at 
the other extremity. Although our model can simulate 
overturning waves, we did not consider wave breaking 
effects in this paper. For non-breaking waves, we will show 
that the higher-harmonic components of the transmitted wave 
are the main cause for the negative horizontal drift force on a 
submerged body. Numerical results will also show that the 
magnitude of this higher-harmonic components increases as 
the body submergence decreases, and incident wavelength 
and steepness increase. 
 
 
 
NEGATIVE DRIFT FORCE 
 

To establish the relationship between horizontal drift 
force and higher-harmonic components of the transmitted 
waves passing over a submerged body, it is useful to first 
obtain a simple estimate of the solution based on the 
conservation of energy and linear horizontal momentum. 
Assuming wave reflection by a submerged circular to be 
negligible and considering the incident and transmitted wave 
amplitudes on the downstream up/down sides of a submerged 
cylinder, let an , bn be the n-th harmonics of the incident and 
transmitted wave amplitudes, respectively. With this assumption, 
application of the conservation of horizontal momentum 
gives an expression for the horizontal drift force to leading 
order, as, 
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From conservation of energy, an and bn are related by, 
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Since, for periodic incident waves, the amplitude of the 

first harmonic a1 is much greater than all other harmonic 
amplitudes, we can neglect all an , n > 1 term in Eqs. 1 and 2.  
From Eqs. 1 and 2, we can obtain 

Eq. 3 provides a way to estimate Dx for given transmitted 
wave harmonic amplitudes, and is a generalization of the result 
of Longuet-Higgins (1977), who only considered the first (b2) 
term only. Although it only represents an approximation valid 

for small incident wave steepness, Eq. 3 indicates that the 
horizontal force is always negative, with a magnitude that 
increases with the degree of higher-harmonic generation. 
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Fig. 1 Computational model for the nonlinear wave diffraction 
by a fixed submerged cylinder (AB: absorbing beach, AP: 
absorbing piston). 
 
 
 
OVERVIEW OF NUMERICAL MODEL 
 
Governing equations and numerical algorithms 
 

Equations for the 2D-FNPF wave model are briefly 
presented in the following. The velocity potential ϕ	 (x, t) is 
used to describe inviscid irrotational flows in the vertical 
plane (x, z) and the velocity is defined by, u=׏ϕ	=(u, w). 
Continuity equation in the fluid domain Ω(t) with boundary 
Γ(t) is a Laplace’s equation for the potential (Fig. 1), 
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On the free surface	 Γf	(t), ϕ satisfies the kinematic and 

dynamic boundary conditions, 
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respectively, with r, the position vector on the free surface, g 
the gravitational acceleration, z the vertical coordinate, Pa the 
pressure at the free surface, and ρ the fluid density. Along the 
stationary bottom Γb and cylinder boundary Γc	, the no-flow 
condition is prescribed as, 
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where n=(nx, nz) is the outwards normal vector defined on the 
boundary. Boundary conditions for wave generation on  
boundary Γw and wave absorption on boundary Γa are 
presented in the next sections. 



Download English Version:

https://daneshyari.com/en/article/4451961

Download Persian Version:

https://daneshyari.com/article/4451961

Daneshyari.com

https://daneshyari.com/en/article/4451961
https://daneshyari.com/article/4451961
https://daneshyari.com

