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a b s t r a c t

Accurate characterization of soil properties such as soil water content (SWC) and bulk density (BD) is
vital for hydrologic processes and thus, it is importance to estimate θ (water content) and ρ (soil bulk
density) among other soil surface parameters involved in water retention and infiltration, runoff gen-
eration and water erosion, etc. The spatial estimation of these soil properties are important in guiding
agricultural management decisions. These soil properties vary both in space and time and are correlated.
Therefore, it is important to find an efficient and robust technique to simulate spatially correlated
variables. Methods such as principal component analysis (PCA) and independent component analysis
(ICA) can be used for the joint simulations of spatially correlated variables, but they are not without their
flaws. This study applied a variant of PCA called independent principal component analysis (IPCA) that
combines the strengths of both PCA and ICA for spatial simulation of SWC and BD using the soil data set
from an 11 km2 Castor watershed in southern Quebec, Canada. Diagnostic checks using the histograms
and cumulative distribution function (cdf) both raw and back transformed simulations show good
agreement. Therefore, the results from this study has potential in characterization of water content
variability and bulk density variation for precision agriculture.
& 2016 International Research and Training Center on Erosion and Sedimentation and China Water and
Power Press. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The accurate characterization of soil water content (SWC) and
other soil properties such as bulk density (BD) are paramount in
guiding agricultural management decisions and for increasing the
potential of the soil for crop productivity. Grote, Anger, Kelly,
Hubbard, and Rubin (2010) reported that the characterization of
SWC could be difficult due to its spatial and temporal variability.
Also, obtaining the adequate soil sample size to characterize the
heterogeneities of SWC can be expensive (Grote et al., 2010). Their
accurate estimate is important for maximizing crop yield, sus-
tainable irrigation practice and reduction in the negative impact
on the environment.

Soil properties such as BD equally influence the productivity of
the soil for crop productivity. BD is an important factor for soil
nutrients retention. Also management and several factors such as
land use, geomorphology and soil heterogeneities affect BD
(Geypens, Vanongeval, Vogels, & Meykens, 1999). SWC and BD
parameters vary in space and time Zhang et al. (2014). There is

spatial correlation among these variables (Bivand, Pebesma, &
Gómez- Rubio, 2008) due to various management decisions such
as irrigation application, soil tillage and so forth. Farmers hope to
be productive, enhance plant growth and maximize yield (Fulton,
Wells, Shearer, & Barnhisel, 1996). There is reduction of 10–20% in
yield due to soil compaction (Kisekka, Migliaccio, Muñoz-Carpena,
Schaffer & Khare, 2014). Kisekka et al. (2014), Zang et al. (2014), Li
and Xinmei (2014), Ngailo and Vieira (2012), Delbari, Afrasiab, and
Loiskandl (2009), and Bourennanea et al. (2007) have all empha-
sized the importance of spatial correlation of soil properties such
as BD and SWC.

The spatial correlations between bivariate or multivariate cor-
related variables can be characterized by variogram and cross
variogram (Bivand et al., 2008). With an appropriate linear model
of co-regionalization (LMC), the variables can be estimated or si-
mulated. These simulations require processing of massive nodes,
which make computation very difficult. Contributors to this
complexity include the tedious inference and modeling of the
cross-variograms, and computational inefficiency, substantially
increased with the number of variables being simulated.

Principal component analysis (PCA) approach has been at-
tempted in the past (Dimitrakopoulos & Makie, 2008; Goovaerts,
1997; Wackernagel, 1995) to solve this problem. A PCA method's
major disadvantage involves the inability to remove cross-
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correlations at distances other than zero ( Goovaerts, 1997).
In this paper, we are proposing another technique, which

combines the strengths of PCA and independent component ana-
lysis (ICA) (ICA is method that does not involve variable transfor-
mation and the random vector of spatially correlated variables can
be decomposed into independent components (IC). The combi-
nation of both PCA and ICA is called independent principal com-
ponent analysis (IPCA). IPCA has been used in the medical field by
Yao, Coquery, and Cao (2012). The current study is the first time it
has been applied in domain of geostatistics. IPCA technique over-
comes the shortcomings of the techniques above because of its
ability to reduce noise and better reflect the internal structure of
the data set. When compared with PCA, IPCA removes correlation
at all lag distance. Also, initial normal score transformation is not
required unlike minimum and maximum autocorrelation factors
(MAF). In case of ICA, IPCA do not suffer from high dimensionality
(Yao et al., 2012).

Therefore, the aim of this paper is to apply IPCA for spatial joint
simulation of SWC and BD. This is relevant in the hydrologic
processes such as infiltration, erosion and flooding studies (Delbari
et al., 2009). IPCA would by-pass the complex matrix inversion in
the direct and cross variogram analysis. The goal of the technique
is to obtain independent components (IC) that provide accurate
structure of the data sets and achieve stochastic simulations better
than MAF, PCA and ICA. The joint simulation of IC will be per-
formed using sequential Gaussian simulation (SGS) technique.

2. Methodology

2.1. Stochastic IPCA modeling procedure

As discussed under “Introduction section”, IPCA combines both
PCA and ICA (Yao et al., 2012). PCA is first applied to the [ ]X nx p ,
where n is the sample size and p represents the number of attri-
butes. X can also be a centered data matrix using the singular
value decomposition (SVD) to extract the loading vectors (Yao
et al., 2012):

( )= ( ) ( )X u U u DV 1T

Where

– ( )X u is the centered data matrix and u represents a geographical
location

– U is an n X p matrix whose columns are uncorrelated
– D is a p X p diagonal matrix with diagonal elements dj
– VT is the transpose of the orthogonal matrix with =V V IT

p

From Eq. (1), the columns of V contain the loading vectors and
they are whitened (Yao et al., 2012).

The next step involves applying ICA to the whitened vectors
using the fastICA algorithm (, 1998, 1999; Langlois, Chartier, &
Gosselin, 2010; Yao et al., 2012). Detailed review about fastICA
algorithm can be seen at (Hyvärinen, 1999; Langlois et al., 2010).
Therefore we will not discuss its procedure.

The IPCA can therefore be summarized as (Yao et al., 2012):

� Application of PCA using SVD: This is applied on the centered
data matrixX . This generates the loading vectors V. The number
of componentsSis chosen to reduce dimensionality.

� Application of ICA: The fastICA algorithm is applied on vectors V
to obtain the independent loading vectors, mT

� Projection of the centered data matrix X: This is applied on the S
independent loading vectors to obtain the independent
components.

� Ordering the IPCS: The kurtosis value is used to order the IPCS.

2.2. Geostatistical modeling procedure

The second stage of this methodology involves using the in-
dependent components obtained from above for stochastic joint
simulation. We selected Sequential Gaussian Simulation technique
for this purpose. The major advantage of the SGS technique in
stochastic simulation is that it provides an estimate of both the
mean and standard deviation of the variable at each grid node
(Boluwade & Madramootoo, 2013; Lin, 2008). SGS chooses a ran-
dom deviate (through a Monte Carlo technique) from the Gaussian
distribution, selected according to a uniform random number re-
presenting the probability level (Boluwade & Madramootoo, 2013;
Lin, 2008). SGS also generates set of realizations that have statis-
tics similar to that of the conditioning data set and equally
quantifies the spatial uncertainty (Boluwade & Madramootoo,
2013; Lin, 2008).

In this study, we summarized the second stage as (Lin, 2008;
Boluwade & Madramootoo, 2013):

� Normal score transformation for the independent components
� Create a random path for the grid D of locations ( )u to be si-

mulated with a data X ( )u of n such that,
X { }( )= ( )……… ( )( )u x x u x n.u n1 .., 2 with initialize i¼1

� Let the algorithm visit ith node of the grid G and estimate the
mean and variance using Simple Kriging technique conditioned
on the values of the data in the neighbor.

� Draw a random value from the Gaussian distribution of the
considering node. This value is considered an SGS estimate.

� This estimate is added back and treated as an observation for
next visit. This is done until all the nodes are visited. When this
is finished (i.e., when = )i D , we obtained one realization, Li

� Next, the realizations are back-transform of the generated rea-
lizations first from normal score and later into data space using
coefficients (the mixing matrix)

� Rescaling of the means (μ) for each corresponding components.

2.3. Study area

This study was conducted at Castor watershed (Fig. 1) which is
located in southern Quebec, Canada. This watershed has a total
area of 11 km2 under reduced tillage system. It drains into Pike
River, which is a tributary to the Mississquoi Bay that is located on
the northeastern part of Lake Champlain. This location was chosen
because the Castor watershed is on the downstream part of the
Pike River watershed where there are intensive agricultural ac-
tivities. The land use pattern has been estimated to be 44% corn,
28% grass and 20% cereal (Beaudin, Michaud, & Desjardins, 2005;
Boluwade, & Madramootoo, 2013). The data sets were collected
during the 2011 summer season.. A random stratified sampling
(according to the soil classes) was done to cover the spatial extent
of the study area (Fig. 1). Each of the points was Geo-referenced
and imported into a global positioning system (GPS) which has a
positional accuracy of 72 m. The sampling depth used was 0–
0.30 m. The soil samples were collected using standard core size.
Gravimetric technique was used to determine both BD and SWC.
The total soil sample size is 144.

3. Results and discussion

3.1. Descriptive statistics and spatial autocorrelation of soil
properties

Table 1 and Fig. 2 show the descriptive statistics and histogram

A. Boluwade, C.A. Madramootoo / International Soil and Water Conservation Research 4 (2016) 151–158152



Download English Version:

https://daneshyari.com/en/article/4452030

Download Persian Version:

https://daneshyari.com/article/4452030

Daneshyari.com

https://daneshyari.com/en/article/4452030
https://daneshyari.com/article/4452030
https://daneshyari.com

