Contents lists available at ScienceDirect

Journal of Aerosol Science

journal homepage: www.elsevier.com/locate/jaerosci

Modelling of deposition of flexible fractal-like aggregates on cylindrical fibre in continuum regime

Łukasz Żywczyk*, Arkadiusz Moskal

Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland

A R T I C L E I N F O

Article history: Received 2 March 2014 Received in revised form 14 July 2014 Accepted 2 December 2014 Available online 11 December 2014

Keywords: Harmonic oscillator equation Potential energy functions Fractal-like aggregates Fractal dimension

ABSTRACT

A new mathematical model of aggregate composed of *N* primary spherical particles has been created. The aggregate structure is modelled as an elastic body, capable of undergoing stretching, bending and twisting, during its movement in fluid. An aggregate is defined as a system of spherical particles joined together by springs, and the stiffness of structure is maintained by potential energy functions. Aggregate movement has been tracked in a Kuwabara cell model for three different values of velocity in continuum regime. The deposition efficiency of aggregates on a cylindrical collector has been related to the fractal dimension of aggregates, velocity of air and spring constant, which determine the magnitude of deformation of the aggregate structure. It was found that fractal dimension, velocity of air and imposed parameters of oscillations constants, strongly influence the deposition efficiency of aggregates.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Aerosol aggregates are composed of many solid particles, and are of great concern in most environmental issues nowadays (Wichmann & Peters, 2000). Those aggregates which are created in diesel engines mostly affect the lungs, causing devastating irreversible consequences to human health as a result. International Agency of Research Cancer (IARC) has classified those aggregates as carcinogenic for humans. On their surface, aggregates can contain hazardous chemicals (Bünger et al., 2000), which are delivered deep into the respiratory system. One of the techniques, which deal effectively with the aggregates separation process from air, is filtration. The production of effective working filters needs to be enhanced by mathematical modelling of the filtration process. One of the crucial stages of computational simulations is to build up a fine mathematical model of the aggregate, which would include the interaction between primary particles.

Real aggregates may undergo modifications of structure owing to the fluid–structure interaction during their movement in fluid. This fact has explicit importance in estimating aggregates deposition ratios on the fibre of the filters. In order to establish deposition efficiencies for fractal-like aggregates, one should include interactions between primary particles which are often not stiff. Aggregates' deposition efficiency is determined largely by the deformation of their structure. A flexible or rigid structure of aggregate gives different values of deposition efficiency (Podgórski et al., 1995). The aim is to develop a model of an aggregate, which should consider interactions between primary particles and deformation of structure.

With the increasing power of the computers, research into the dynamics of fractal-like aggregates has been enhanced by more complex and accurate mathematical models of aggregates. There are two ways to model fractal-like aggregates.

* Corresponding author. Tel.: +48 22 234 63 75. E-mail address: l.zywczyk@ichip.pw.edu.pl (Ł. Żywczyk).

http://dx.doi.org/10.1016/j.jaerosci.2014.12.002 0021-8502/© 2014 Elsevier Ltd. All rights reserved.

- Nomenclature A normal vector of plane created by triplet of particles *i*–*j*–*k* В normal vector of plane created by triplet of particles *j*-*k*-*l* d_p diameter of primary particle in aggregate [m] diameter of fibre [m] d_f Cunningham's slip correction factor C_{S} D diffusion coefficient [m²/s] D_f fractal dimension $\hat{\boldsymbol{e}}_{x}, \, \hat{\boldsymbol{e}}_{y}, \, \hat{\boldsymbol{e}}_{z}$ unit base vectors Eı efficiency of deposition of impaction mechanism efficiency of deposition of interception E_R mechanism E_d efficiency of deposition of diffusion mechanism Ε total efficiency of deposition considering all mechanisms correction factor for drag force fi f_d fd damping factor of oscillations [kg/s] dimensionless damping factor of oscillations f_{sh i} accessibility factor $F = F_i^{B_i D_i} F_i^{S_i D_i} F_i^{D_i} F_i^{D_i} F_i^{B_i} F_i^{B_i} F_i^{B_i} F_i^{S_i} F_i^{S_i}$ vector between connected particles *i* and *j* Brownian force acting on *i*th particle [N] drag force acting on *i*th particle [N] oscillation force acting on *i*th particle [N] bend force acting on *i*th particle [N] torsion force acting on *i*th particle [N] inverse force acting on *i*th particle [N] Brownian force acting on *i*th particle [N] dimensionless harmonic oscillation force acting on *i*th particle \mathbf{F}_{i}^{b*} dimensionless harmonic bend force acting on *i*th particle \mathbf{F}_{i}^{t*} dimensionless harmonic torsion force acting on *i*th particle F_i^{p*} dimensionless harmonic inverse force acting on *i*th particle G vector between connected particles *j* and *k* Η vector between connected particles *h* and *k* parameter in the correlation function for effi-Ι ciency of deposition of impaction mechanism. k Boltzmann's constant [J/K] $k_{\rm s}$ bond constant (spring constant) [kg/s²] bending constant $[kg m/s^2]$ k_b torsion constant $[kg m/s^2]$ k_t k_p inversion constant [kg m/s²] Knudsen number Kn Ku Kuwabara hydrodynamic factor ĩ characteristic length [m] parameter in interception mechanism т mass of *i*th particle in aggregate [kg] m_{ni} ñ characteristic mass [kg] n_i number of neighbour particles (coordination number) of *i*th particle in aggregate Ν number of particles in aggregate
- N_R interception parameter
- *Pe* Peclet number

r _i	position of <i>i</i> th particle relatively to the origin					
	of coordinate system [m]					
r _{ij}	distance between particles indexed i and j					
	respectively [m]					
r _{0ij}	distance between two particles i and j in					
	equilibrium state [m]					
R_g	radius of gyration [m]					
R_p	radius of primary particle in aggregate [m]					
R _{max}	maximal radius of aggregate [m]					
R_f	fibre radius [m]					
Ragg	radius of fractal aggregate used as a radius of					
	spherical particle [m]					
Stk	Stokes number					
t	time [s]					
ĩ	characteristic time [s]					
Т	temperature of fluid [K]					
$V_s(r_{ij})$	harmonic bond potential energy [J]					
$V_b(\theta_{ijk})$	harmonic cosine angle potential energy [J]					
$V_t(\varphi_{ijkl})$	torsion potential energy [J]					
$V_p(\xi_{ijkl})$	inversion potential energy [J]					
\boldsymbol{v}_i	velocity of <i>i</i> particle in aggregate [m/s]					
v_i^*	dimensionless velocity of <i>i</i> th particle in					
	aggregate					
U	velocity of ambient air around cylindrical					
	collector [m/s]					
U^*	dimensionless velocity of ambient air around					
	cylindrical collector					
Z_i	dimensionless vector, with random direction					
	and magnitude that is distributed normally,					
	with zero mean and unit variance.					

Greek letters

α	packing	density of	of filter	structure	

- α_{Be} characteristic magnitude of the acceleration of Brownian excitation[m/s²]
- $\alpha_{\nu B}$ characteristic magnitude of the deceleration caused by viscous dissipation during the Brownian motion of a single primary particle [m/s²]
- $\delta_{\alpha\beta}$ Kronecker delta symbol
- $\epsilon_{\alpha\beta\gamma}$ Levi–Civita symbol
- ∆t time step used to integrate equation of trajectory [s]
- Δt^* dimensionless time step used to integrate equation of trajectory
- η deposition efficiency of aggregates
- θ_{ijk} angle created between vectors of two pairs of particles *i*-*j* and *j*-*k*
- θ_{0ijk} initial angle created between vectors of two pairs of particles *i*-*j* and *j*-*k*
- μ_f viscosity of fluid [Pa s]
- ξ_{ijkl} angle between plane created by triplet of particles i-j-k and vector created by particles j-l
- ξ_{0ijkl} initial angle between plane created by triplet of particles i-j-k, and vector created particles j-l
- ρ density of fluid [kg/m³]
- ρ_p density of aggregate particle [kg/m³]

Download English Version:

https://daneshyari.com/en/article/4452274

Download Persian Version:

https://daneshyari.com/article/4452274

Daneshyari.com