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a b s t r a c t

A new analytical solution is first proposed to solve the population balance equation due to
Brownian coagulation in the continuum-slip regime. An assumption for a novel variable g
(g ¼m0m2=m1

2, where m0, m1 and m2 are the first three moments, respectively) is
successfully applied in executing a separate variable method for ordinary differential
equations of the Taylor expansion method of moments. The sectional method is selected
as a reference to verify the new solution. The accuracy between the new solution and Lee
et al. analytical solution (Lee et al., 1997, Journal of Colloid and Interface Science, 188, 486–
492) is mainly compared. The geometric standard deviation of number distribution for the
new analytical solution is revealed to be limited to 1.6583. Within the valid range of the
geometric standard deviation, the new analytical solution is confirmed to solve the
population balance equation undergoing Brownian coagulation with the very nearly same
accuracy as Lee et al. analytical solution. For the total particle number concentration, the
new solution usually yields higher accuracy. The new solution and Lee et al. analytical
solution approximately become one solution as the Knudsen number is smaller than
0.1000. The new solution has the potential to become a competitive analytical solution for
solving population balance equation regarding its accuracy and very straightforward
derivation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A reliable prediction for aerosol properties including the total particle number concentration, the geometric mean size
and the geometric standard deviation of number distribution has received much attention in emerging fields such as the
risk evaluation of aerosols at workplace, the development of realistic exposure scenarios and the nanoparticle synthesis
process (Buesser & Pratsinis, 2012; Vogel et al., 2014; Yu et al., 2008a, 2008b). For these aerosols, the evolution of particle
size distribution due to Brownian coagulation is unavoidable (Lee & Wu, 2005; Upadhyay & Ezekoye, 2003), which usually
leads to unsteady systems and has been confirmed to determine the aerosol characteristics in almost all ultrafine and
nanoparticle processes(Crowe et al., 2011; Friedlander, 2000). When these processes are theoretically investigated, the
evolution of the size distribution must be captured in mathematical models (Buesser & Pratsinis, 2012; Xie & Wang, 2013;
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Santos et al., 2013; Singh et al., 2013). To meet the requirement, Müller established the integral-differential equation for the
dynamical process in 1928 based on the ground-breaking work of Smoluchowski (Müller, 1928; Smoluchowski, 1917), which
was later called Population Balance Equation (PBE). The PBE has become a basic governing equation to study aerosol
dynamics from then on. However, the analytical solution of this equation, especially in terms of a particle size dependent
coagulation kernel, still remains a challenging issue.

The PBE is a strong non-linear equation with the same mathematical structure as Boltzmann's transport equation. Thus,
an exact analytical solution for it cannot be achieved (Lee et al., 1997; Yu et al., 2008a, 2008b). To solve it analytically, the
group of Prof. Lee in Kwangju Institute of Science and Technology, Korea has performed a series of ground-breaking works in
different specific-size regimes with a log-normal distribution assumption (Lee et al., 1997, 1984; Otto et al., 1999; Park et al.,
1999). These works received much attention because of their ability to capture the evolution of the size distribution.
Another solution deserved to be mentioned to solve the PBE was proposed in 1964 by introducing a similarity
transformation in the size distribution function (Swift & Friedlander, 1964), which is actually an asymptotic solution
independent of the initial size distribution. The idea in the asymptotic solution was currently accepted in studies on
Brownian coagulation processes using the Taylor expansion method of moments (TEMOM) (Chen et al., 2014a; Xie & Wang,
2013). In both the free molecular and continuum regimes, asymptotic solutions exist because the asymptotic status for the
size distribution, i.e., self-preserving size distribution (SPSD), has been verified in both the regimes (Friedlander, 2000).
However, in the continuum-slip regime, especially as the Knudsen number ranges from �0.1000 to �5.0000 (also called the
near-continuum regime), the geometric standard deviation (GSD) of number distribution always varies with the Knudsen
number (Otto et al., 1994; Park et al., 1999; Yu et al., 2011). In this case, the asymptotic solution will no longer exist. In fact,
the asymptotic solution has a fatal shortcoming in that it is not able to capture the evolution of size distribution for the time
period before the self-preserving size distribution is achieved (Lee et al., 1997). Therefore, an alternative solution beyond the
asymptotic status and without the requirement for the pre-defined size distribution becomes necessary.

The TEMOM exhibits a huge potential to achieve the time-dependent analytical solution for the PBE due to its very
simple mathematical structure of equations (Chen et al., 2014b; Xie et al., 2012; Yu et al., 2011; Yu & Lin, 2009a, 2009b).
The key of the TEMOM is that fractal moments in the ordinary differential equations (ODEs) for moments can be replaced by
the following expression (Yu et al., 2008a, 2008b):

mk ¼
uk�2k2
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where u is the Taylor expansion point, k is the fractal number, and m0; m1 and m2 are the first three moments. The zeroth
and the first moments represent the total particle number concentration and the total volume concentration, respectively,
while the second moment is a polydispersity variable. In the continuum-slip regime, the TEMOM (Yu et al., 2011) can be
used for the Knudsen number up to 5.0000 (Lee et al., 1997). This method is valid for particles with diameter larger than
�27 nm; thus, this method can be used to resolve almost all Brownian coagulation issues, as shown in Fig. 1. The TEMOM
ODEs have been successfully numerically solved using a highly reliable Runge–Kutta algorithm (Yu et al., 2011).

Nomenclature

A constant (¼1.591)
r particle radius, m
N particle number concentration density, m�3

B2 collision coefficient for the continuum-
slip regime

C Cunningham correction factor
kb Boltzmann constant, J K
Kn particle Knudsen number
mk kth moment of particle size distribution
g m0m2=m1

2

Mk dimensionless kth moment of size distribution
T time, s
T temperature, K
U the point of Taylor-series expansion (m1/m0)
v particle volume, m3

vg geometric mean particle volume, m3

N initial total particle number concentration,
m�3

Greek letters

Ν kinematic viscosity, m2 s�1

Β particle collision kernel
Μ gas viscosity kg m�1 s�1

λ mean free path of the gas, m
σg geometric mean deviation of size distribution
τ dimensionless coagulation time, tN0B2

Abbreviation

PBE population balance equation
TEMOM Taylor expansion method of moments
GSD geometric standard deviation of number

distribution
ODE ordinary differential equation
SM sectional method
QMOM quadrature method of moments
SPSD self-preserving size distribution
PSPSD pseudo-self-preserving size distribution
Log-normal AMM log-normal analytical method of

moments
Log-normal NMM log-normal numerical method of

moments
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