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a b s t r a c t

The Monte Carlo (MC) method for population balance modeling (PBM) has become
increasingly popular because the discrete and stochastic nature of the MC method is
especially suited for particle dynamics. However, for the two-particle events (typically,
particle coagulation), the double looping over all simulation particles is required in normal
MC methods, and the computational cost is O(Ns

2
), where Ns is the simulation particle

number. This paper proposes a fast random simulation scheme based on the differentially-
weighted Monte Carlo (DWMC) method. The majorant of coagulation kernel was
introduced to estimate the maximum coagulation rate by a single looping over all
particles rather than the double looping. The acceptance–rejection process then pro-
ceeded to select successful coagulation particle pairs randomly, and meanwhile the
waiting time (time-step) for a coagulation event was estimated by summing the
coagulation kernels of rejected and accepted particle pairs. In such a way, the double
looping is avoided and computational efficiency is greatly improved as expected. Five
coagulation cases for which analytical solutions or benchmark solutions exist were
simulated by the fast and normal DWMC, respectively. It is found the CPU time required
is orders of magnitude lower and only increases linearly with Ns; at the same time the
computational accuracy is guaranteed very favorably.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Coagulation between particles (or bubbles, droplets) is ubiquitous in many different fields of nature and engineering
(Friedlander, 2000), including atmospheric physics (aerosol dynamics), combustion (the growth of particulate matter, soot and
PAH), chemical engineering (e.g., polymerization, granulation, crystallization, and precipitation), catalytic chemical processes, food
processes, nanoparticle synthesis, and so on. The particle coagulation refers to two particles collide and adhere together, leading to
the increase of average particle size and the decrease of particle number concentration, i.e., the dynamic evolution of particle size
distribution (PSD). Among the various particle dynamic events, coagulation is the most demanding event for modeling, as it always
involves two discrete particles. The population balance equitation (PBE) for particle coagulation, which characterizes coagulation
dynamics in term of the time evolution of PSD, is represented by the following mathematical equation:
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where n(v, t) with dimension m�3 m�3 is the particle size distribution function (PSDF) at time t, so that n(v, t)dv is the number
concentration of particles with size range between v and vþdv at time t; β(v, u, t) is the coagulation kernel for two particles of
volumes v and u at time t, m3 s�1.

Because of the partial integro-differential nature of the PBE, it is difficult to solve it directly. Only for a few ideal cases can
we get analytic solutions, otherwise we can only get approximate solutions by numerical methods. The deterministic
scheme such as sectional method and method of moments (Frenklach & Harris, 1987; Gelbard et al., 1980) is capable of
solving Eq. (1) either through an appropriate discretization scheme or by quadrature. However, there exist some difficulties
such as complicated mathematical models (especially for multivariate population balance) and discrete errors for the
deterministic methods. The stochastic (Monte Carlo) scheme, which describes directly the dynamic evolution of particle
population in dispersed systems, approximates the PBE solution through a large amount of random sampling from the
system. The discrete nature of the MC method adapts itself naturally to the discrete process (i.e., the discrete particle
population and the discrete dynamic events). The population balance-Monte Carlo (PBMC) can obtain the details of the
dynamic evolution of multi-dimensional, multi-component, and polydispersed particle population (Zhao & Zheng, 2011,
2013; Zhao et al., 2011). Furthermore, the MC algorithm is comparatively easy to program. Owing to these advantages, MC
constitutes an important class of methods for the numerical solution of the population balance modeling (PBM).

Generally speaking, MC methods can be classified either by time discretization scheme into event-driven MC and time-
driven MC, or by simulation particle weighting scheme into equally-weighted MC and differentially-weighted MC. Event-
driven MC (Garcia et al., 1987) first calculates time interval (or waiting time) ΔtED between two successive events based on
the average rate of event processes and then uses the stochastic game to choose the event that happens after this waiting
time. Time-driven MC (Liffman, 1992) considers all possible events that may happenwithin a pre-specified time step ΔtTD to
be decoupled; ΔtTD is constrained to be less than or equal to the minimum time scale within which each simulation particle
participates in one coagulation event at most. Most of the MC methods (Garcia et al., 1987; Liffman, 1992; Lin et al., 2002;
Maisels et al., 2004) belong to the equally-weighted method, in which all simulation particles have the same weight. Usually
a subsystem of the total system is simulated either explicitly or implicitly, in which the common weight is equal to the ratio
of the volume of the total system to that of the subsystem. However, the equally weighting scheme leads to a great deal of
statistical noise for particles in those less-populated sections such as at the edges of log-normal distributed size spectrum. In
the differentially weighting scheme, these sections where the number density is low can be represented by simulation
particles with appropriate number and relatively small weight. Keeping track of differentially weighted simulation particles
of different sizes will thus help to improve the accuracy of MC. We have proposed the differentially-weighted Monte Carlo
(DWMC) method for particle coagulation for univariate population balance (Zhao et al., 2005a, 2005b) and multivariate
population balance (e.g., two-component aggregation) (Zhao et al., 2010, 2011). The key ideas are to establish the
coagulation rules that describe how to deal with coagulation between differentially-weighted simulation particles, and to
specify how the simulation particles should be homogeneously distributed over the size spectrum (rather than to let them
evolve freely). The DWMC can evolve in either event-driven mode (Zhao & Zheng, 2009b) or time-driven mode (Zhao et al.,
2010), and keeps the total number of simulation particles constant in simulation. It was validated that the DWMC methods
perform better statistical accuracy than other equally-weighted MC.

It is worth emphasizing that an optimal combination of high accuracy and high efficiency are essential for PBMC, because
with the increase in simulation particle number its numerical accuracy increases while its computational efficiency
decreases. For the two-particle events such as coagulation (or aggregation, agglomeration), the normal PBMC simulation has
to calculate/update the interaction probability of any particle pair each time step to obtain probability distribution of
random events and the waiting time between two successive events. The double looping over all simulation particles is thus
required in the normal PBMC methods, so the computational cost reaches O(Ns

2
), where Ns is the simulation particle number.

Although there is dramatic increase in computational power over the past decade, it is still very necessary to improve the
computational efficiency for fast prediction of particle dynamics. There are two kinds of ways to accelerate MC simulation:
one is parallel computing (Kruis et al., 2010), including CPU parallel computing based on Message Passing Interface (MPI)
and Open Multi-Processing (OpenMP), and Graphitic Processing Unit (GPU) parallel computing based on Open Computing
Language (OpenCL) and Compute Unified Device Architecture (CUDA) (Wei & Kruis, 2013). Factually the parallel computing
of MC simulation uses more computer source simultaneously to reduce computational time. Another is to improve the
scheme of PBMC itself to accelerate simulation. Kruis et al. (2000) proposed the smart bookkeeping technology to avoid a
large number of re-calculations of the coagulation rates of particles not participating in coagulation, in such a way that the
CPU time is greatly saved without loss in accuracy. Wagner et al. (Eibeck & Wagner, 2000, 2001) and Kraft et al. (Goodson &
Kraft, 2002) developed a new efficient MC which utilized the majorant of coagulation kernel to calculate the coagulation
probability of all particle pairs by a single looping over all particles rather than the double looping. A Markov model with
fictitious jumps was then constructed to simulate particle dynamics with high accuracy. The CPU time increases linearly
with Ns, rather than as Ns

2
(as with the conventional MC). Recently, Wei (2013) proposed a fast acceptance–rejection scheme

that can boost the performance of Monte Carlo methods for particle coagulation by establishing a connection between the
information of particle pairs and the maximum coagulation rate. Lécot and Tarhini (2008) and Lécot and Wagner (2004)
proposed the quasi-Monte Carlo to accelerate the convergence rate, in which pseudo-random numbers were replaced by
quasi-random numbers or low-discrepancy point sets (which are “evenly distributed”). Similar idea in terms of good lattice
point set was also used by Kruis et al. (2012) to estimate the maximum of coagulation kernel with a remarkable gain in
efficiency. Another measure accelerating PBMC simulation is to simulate coagulation between particle species rather than
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