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a b s t r a c t

The direct expansion method of moments for nanoparticle Brownian coagulation is
investigated in the entire size regime. The exact Dahneke's formula is used as the
coagulation kernel. After comparing the results predicted by the direct expansion method
of moments with those provided by the quadrature method of moments, the direct
expansion method is proved to be qualified for predicting the time evolution of the lower
order moments such as the zeroth and second moments. For relatively small initial
geometric standard deviation, the results predicted by the direction expansion method of
moments are more accurate than those provided by the quadrature method of moments.
The partial derivatives of the coagulation kernel that appear in the direction expansion
method of moments are calculated numerically due to the complicated form of the
selected kernel, and the computational time can be reduced by means of parallel
computing.

& 2013 Published by Elsevier Ltd.

1. Introduction

Nanoparticle Brownian coagulation is a process whereby individual nanoparticles collide with one another and stick
together to form larger particles due to their relative Brownian motion. The net result of nanoparticle coagulation is a
decrease in number concentration as well as an increase in particle size. The evolution of nanoparticle size distribution can
be traced by means of solving the particle general dynamic equation (PGDE) analytically or numerically. Only a limited
number of analytical solutions of the PGDE can be found because of its nonlinear integro-differential nature. As a result,
several numerical methods have been proposed and developed to obtain the approximate solutions, such as the method of
moments (MOM) (Lee, 1983; Frenklach & Harris, 1987; Pratsinis, 1988; McGraw, 1997; Yu et al., 2008) and the sectional
method (SM) (Gelbard & Seinfeld, 1980; Gelbard et al., 1980; Wu & Flagan, 1988; Landgrebe & Pratsinis, 1990). Different
methods are used in different fields to meet particular practical requirement according to their different advantages and
disadvantages in accuracy and efficiency. The method of moments is prior to the sectional method in efficiency while the
sectional method is more accurate than the method of moments.

The method of moments, which typically solves the first three moments of particle volume distribution, is
computationally efficient and has become a useful tool for investigating the evolution of the representative properties of
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nanoparticle system such as particle concentration and mean volume. Conventionally, the closure of moment evolution
equations is achieved by specifying the shape of the particle size distribution in advance (Lee, 1983; Lee et al., 1984;
Pratsinis, 1988). By assuming the particle size distribution to be a time-dependent log-normal function, Lee (1983) first
analytically studied the particle size distribution and geometric standard deviation for Brownian coagulation in the
continuum regime. The same technique was used to investigate Brownian coagulation in the free molecular regime (Lee
et al., 1984) and the entire size regime (Otto et al., 1999; Park et al., 1999). To get rid of the restriction of specifying particle
size distribution in advance, McGraw (1997) proposed the quadrature method of moments (QMOM) by using an n-point
Gaussian quadrature to approximate the integral terms that appear in the moment evolution equations. The QMOM has
been proved to be valid and applied to any form of coagulation kernels. However, the weights and abscissas of the
quadrature approximation must be calculated by means of certain algorithms such as product-difference algorithm (Gordon,
1968; Press & Teukolsky, 1990), long quotient-modified difference algorithm (Sack & Donovan, 1971) and Golub–Welsch
algorithm (Golub & Welsch, 1969), which makes the QMOM a computationally expensive method in comparison with other
methods of moments. To avoid this disadvantage, Yu et al. (2008) put forward a new numerical method named Taylor-
expansion method of moments (TEMOM) for Brownian coagulation in both free molecular and continuum regimes, and it
has been further extended to the entire size regime (Yu et al., 2011). However, the moment transfer for the TEMOM could
not be accomplished when the coagulation kernel is sufficiently complex, e.g., Fuchs' semi-empirical coagulation kernel for
Brownian coagulation in the transition regime (Fuchs, 1964). In this article, therefore, we take advantage of a newly
proposed method of moments, namely the direct expansion method of moments (DEMM), which is based on the TEMOM
with the basic idea of closing the moment evolution equations by means of Taylor-series expansion technique. The DEMM
makes it possible to use the fractional order moments to improve the accuracy of the results, and has the potential to deal
with complex coagulation kernels.

In the present study, we focus on the Brownian coagulation in the entire size regime using the DEMM with one selected
coagulation kernel and compare the DEMM with QMOM both in accuracy and efficiency under the same computational
condition. Meanwhile, the sectional method is used as a reference for validating other methods due to its high accuracy.

2. Theory

There are two ways to describe the coagulation process. The first one is put forward by Smoluchowski (1917), who
developed expressions for discrete particle size distribution. The second one, which is used in the present study, assumes
that the particle size distribution is continuous. The particle size distribution of a nanoparticle system undergoing
coagulation is governed by a nonlinear integro-differential equation in case that a continuous particle size distribution is
utilized (Müller, 1928; Friedlander, 2000), i.e.,
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where v and v1 are the particle volumes, n(v,t) is the particle size distribution and β(v,v1) is the coagulation kernel for two
particles of volumes v and v1.

The nanoparticle dynamics depends upon the Knudsen number Kn (Kn¼λ/α, where λ is the molecular mean free path in
the gas and a is the radius of nanoparticle). There are two limiting regimes corresponding to large and small values of Kn for
which the theories are well characterized, namely the near-continuum regime (Kno1) and free molecular regime
(Kn450). The coagulation kernel for the near-continuum regime can be expressed as
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 !
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where Kco ¼ 2kBT=3μ is the coagulation coefficient for the continuum regime, kB is the Boltzmann constant, T the absolute
temperature, μ the gas viscosity and C is the Cunningham correction factor (Cunningham, 1910; Davies, 1945), which is given
by

C ¼ 1þKn½A1þA2 expð�A3=KnÞ� ð3Þ
where A1, A2 and A3 are constants.

The coagulation kernel for the free molecular regime is given by (Yu et al., 2009)
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where Kfm ¼ ð3=4πÞ1=6ð6kBT=ρÞ1=2 is the coagulation coefficient for the free molecular regime and ρ is the mass density of the
corresponding nanoparticle.

The transition regime is characterized by 1oKno50 in which the coagulation kernel is described neither by the near-
continuum theory nor the kinetic theory for the free molecular regime. Fuchs (1934) found a semi-empirical expression for
the coagulation kernel by assuming that outside of the distance of an average mean free path of certain particles, the
transport of particles is described by the continuum diffusion theory with Cunningham correction factor for slip, and inside
this distance the particles move like in a vacuum. Dahneke (1983) also derived a solution of the coagulation kernel for the
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