

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/ies

www.jesc.ac.cn

Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation

Qianyuan Wu*,1, Yue Li1, Wenlong Wang, Ting Wang, Hongying Hu

Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China

Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

ARTICLEINFO

Article history: Received 9 March 2015 Revised 19 June 2015 Accepted 23 June 2015 Available online 1 September 2015

Keywords:
Textile wastewater
Azo dye
Ultraviolet irradiation
Chlorine
Advanced oxidation process

ABSTRACT

Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254 nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially 'OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO₃ and Cl⁻ to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation.

© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.

Introduction

Textile wastewater is an important contributor to environmental pollution of water in many countries. In China in 2012, textile industry discharges into waterways accounted for 11% and 9% of the total wastewater volumes and chemical oxygen demand discharges from all industrial sources, respectively (China Statistical Yearbook on Environment, 2013). Wastewater from dyeing and finishing processes plays a dominant role in pollution from the textile industry, because of the high concentrations of COD, salinity, colors, and toxic substances in these waste streams (Solís et al., 2012). Therefore, control of

wastewater pollution from these sources has received increasing attention around the world.

Azo dyes are widely used in dyeing and finishing processes, and are present in 60%–70% of all commercial dyes (Iṣik and Sponza, 2005). Azo dyes are strong colorants, and have high bio-recalcitrance and toxicity because of their nitrogennitrogen double bonds (Cai et al., 2015). Untreated azo dye effluents are toxic and mutagenic to aquatic organisms in receiving waters (Panda and Mathews, 2014). Therefore, treatment technologies for removal of azo dyes are important.

Because azo dyes are bio-recalcitrant (Brown and Hamburger, 1987), chemical oxidation processes are frequently used to

^{*} Corresponding author. E-mail: wuqianyuan@tsinghua.edu.cn (Qianyuan Wu).

¹ The authors contribute equally to this article.

remove color from secondary effluents. Ozonation and Fenton oxidation are useful for removing some dyes. Ozonation quickly decolorizes colored wastewater via oxidative cleavage of the conjugated bonds in dye molecules (Tehrani-Bagha et al., 2010). Idel-aouad et al. (2011) found that the heterogeneous Fenton process using Fe(II)-exchanged synthetic Y Zeolite provided good performance in decolorization of a C.I. Acid Red 14 solution at pH 3.13-7.27. However, ozonation is very expensive, and Fenton oxidation produces large quantities of iron-containing sludge. Recently, the ultraviolet (UV)/H2O2 process has been considered as a promising technology for azo dye removal. UV/H₂O₂-generated hydroxyl radicals can react non-selectively with a broad range of organic compounds (Narayanasamy and Murugesan, 2014; Kasiri and Khataee, 2012). The principal advantage of the UV/H2O2 technology is that no sludge is created after treatment (Behnajady et al., 2006). However, H₂O₂ is expensive.

Recently, UV/chlorine oxidation has been reported as a novel advanced oxidation process (Feng et al., 2007, 2010). During UV/chlorine oxidation, free chlorine, including HOCl and OCl⁻, absorbs UV photons and produces several radicals, including hydroxyl ('OH) and chlorine ('Cl) radicals (Nowell and Hoigné, 1992). The molar absorption coefficients of HOCl and OCl at 254 nm have been determined to be 59 ± 1 and $66 \pm 1 \text{ L/(mol \cdot cm)}$ respectively (Feng et al., 2007), whereas the molar absorption coefficient of H₂O₂ at 254 nm is only 18.4 L/(mol · cm) (Stefan et al., 1996). During UV irradiation, HOCl has a much smaller OH scavenging rate than H2O2 (Watts and Linden, 2007). The yield of 'OH during the UV/ chlorine oxidation process is affected by the oxidation conditions, including pH and concentrations of the pollutants. The OH radicals produced have been used for removing pollutants such as nitrobenzene, trichloroethylene, and iopamidol (Watts and Linden, 2007; Wang et al., 2012; Sichel et al., 2011). Furthermore, Cl radicals formed during the UV/ chlorine oxidation process may also play an important role in pollutant degradation. In one study (Fang et al., 2014), the 'Cl radicals removed 62%-65% of the benzoic acid. Reaction rates of 'Cl with some compounds containing electrophilic functional groups, such as acetic acid, benzoic acid, and phenol, are much higher than those of OH (Fang et al., 2014). However, the removal of azo dyes using UV/chlorine oxidation, and especially under high salinity and alkalinity conditions, has not been reported.

The objective of this study was to evaluate the removal efficiency of azo dyes by low pressure UV/chlorine oxidation. The effects of UV irradiation doses, chlorine doses, pH values, and ion concentrations on azo dye removal during UV/chlorine oxidation were investigated. The roles of radicals during the UV/chlorine oxidation were also evaluated.

1. Materials and methods

1.1. Chemicals and materials

The commercial azo dye C.I. Reactive Red 2 (RR2) (CAS No. 17804-49-8) was obtained from Jiaying Chemical Company (Jiaying Chemical Company, Shanghai, China) and used without further purification. Sodium hypochlorite solution (13% available

chlorine) was purchased from J&K Company (J&K, Beijing, China). Acetonitrile was of HPLC grade. Na₂SO₃ was of analytical grade. All solutions were prepared with ultrapure water (18.25 M Ω) from a Milli-Q purification system (Milli-Q, Millipore, USA).

1.2. RR2 degradation by UV/chlorine oxidation

The UV/chlorine oxidation experiments were conducted in a UV-C irradiation system with an 80-W UV-C lamp at 254 nm (80 W, Light Sources, USA) at 298 K. Free chlorine was added to RR2 solutions (20 mg/L initial RR2, 100 mL) in 120-mL beakers with an inner diameter of 10 cm to give free chlorine doses of 0-20 mg/L. Then the mixture was placed under the UV light and continuously stirred using magnetic agitators at ambient temperature (25 \pm 2°C); a schematic diagram is shown in Fig. 1. The quantum yield was calculated at 0.740 ± 0.021 and the incident photon flux (I₀) was determined to be 0.325 µEinstein/ sec using KI/KIO₃ actinometry (Bolton et al., 2011). The corresponding average UV fluence rate (E_{avg}) was about 2.0 mW/cm². The UV fluence was calculated as the fluence rate multiplied by the exposure time (Rosenfeldt et al., 2006). After UV/chlorine oxidation, Na₂SO₃ was used to remove residual chlorine in the solutions for subsequent RR2, color, and total organic carbon (TOC) analysis. All the experiments were conducted with at least duplicate measurements.

Experiments were conducted to evaluate the effect of pH on RR2 removal. The pH value of the dye solution was kept at 4, 7, 7.5, 8 or 9 by addition of phosphate buffer (final concentration 20 mmol/L).

To evaluate the effect of radicals on RR2 removal, NB and BA at final doses of 10 mg/L and 50 mg/L, respectively, were added into a RR2 solution containing free chlorine (5 mg free chlorine/L). NB was used to quench 'OH during UV/chlorine oxidation, while BA was a scavenger of 'OH and 'Cl.

1.3. Analytical methods

The RR2 concentrations in the solutions after UV/chlorine oxidation were determined by high performance liquid chromatography (LC20, Shimadzu, Japan) with detection at 538 nm. A reversed-phase column (ODS-C18, Bonna-Agela China, Tianjin, China) was used for separation, with a mobile phase of 50% acetonitrile and 50% ultrapure water at a flow rate of 0.5 mL/min.

The color, UV absorbance spectrum, and TOC values of the dye solutions after UV/chlorine oxidation were determined using a color analyzer (SD-9012, Xin Rui, China), ultravioletvisible (UV-Vis) spectrophotometer (UV-2450, Shimadzu, Japan), and TOC analyzer (TOC-L, Shimadzu, Japan).

2. Results and discussion

2.1. Degradation of azo dye during UV/chlorine oxidation

2.1.1. Removal of azo dye and its color

The changes in dye concentration and color of RR2 solutions after UV/chlorine oxidation, after only UV irradiation, and after only chlorination are shown in Fig. 2. After only UV

Download English Version:

https://daneshyari.com/en/article/4453712

Download Persian Version:

 $\underline{https://daneshyari.com/article/4453712}$

Daneshyari.com