

Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011

Jinfeng Li¹, Keding Lu¹, Wei Lv¹, Jun Li¹, Liuju Zhong², Yubo Ou², Duohong Chen², Xin Huang¹, Yuanhang Zhang^{1,*}

1. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China. E-mail: jfli@pku.edu.cn 2. Guangdong Provincial Environmental Monitoring Center, Guangzhou 510045, China

ARTICLE INFO

Article history: Special issue: Progress and prospects of atmospheric environmental science in China

Keywords: O₃ cluster analysis temporal variation smog production algorithm Pearl River Delta DOI: 10.1016/S1001-0742(13)60377-0

ABSTRACT

Based on the observation by a Regional Air Quality Monitoring Network including 16 monitoring stations, temporal and spatial variations of ozone (O_3) , NO_2 and total oxidant (Ox) were analyzed by both linear regression and cluster analysis. A fast increase of regional O₃ concentrations of 0.86 ppbV/yr was found for the annual averaged values from 2006 to 2011 in Guangdong, China. Such fast O₃ increase is accompanied by a correspondingly fast NOx reduction as indicated by a fast NO₂ reduction rate of 0.61 ppbV/yr. Based on a cluster analysis, the monitoring stations were classified into two major categories - rural stations (non-urban) and suburban/urban stations. The O₃ concentrations at rural stations were relatively conserved while those at suburban/urban stations showed a fast increase rate of 2.0 ppbV/yr accompanied by a NO2 reduction rate of 1.2 ppbV/yr. Moreover, a rapid increase of the averaged O3 concentrations in springtime (13%/yr referred to 2006 level) was observed, which may result from the increase of solar duration, reduction of precipitation in Guangdong and transport from Eastern Central China. Application of smog production algorithm showed that the photochemical O₃ production is mainly volatile organic compounds (VOC)-controlled. However, the photochemical O_3 production is sensitive to both NOx and VOC for O_3 pollution episode. Accordingly, it is expected that a combined NOx and VOC reduction will be helpful for the reduction of the O₃ pollution episodes in Pearl River Delta while stringent VOC emission control is in general required for the regional O₃ pollution control.

Introduction

After four decades of rapid economic development, recently China passed Japan as the second largest economy worldwide. In parallel to the fast economic growth, the air quality showed a serious deterioration at a national scale. In three eastern megacity areas, such as the Beijing-Tianjin area, the Pearl River Delta (PRD) and the Yangtze River Delta, pollution episodes with ozone (O₃) concentrations larger than 93 ppbV (200 μ g/m³) corresponding to the Chinese national air quality standard were frequently reported in recent years (Lu et al., 2010a, 2010b; Shao et al., 2006; Wang et al., 2003, 2010; Zhang et al., 2008b). As is well known, O₃ is toxic toward human-beings (Bell et al., 2004), agriculture (Wang et al., 2005) and ecosystem (Ashmore, 2005). In China, an epidemiologic study showed that an increase of $10 \mu g/m^3$ (ca. 5 ppbV) of the averaged O₃ concentrations over the previous 2 days would cause 0.81% increase in total mortality over PRD from 2006 to 2008 (Tao et al., 2012). As diagnosed by both regional and global models, high O₃ concentrations in China not only showed detrimental effects in China and neighboring countries (Heald et al., 2003), but also show

^{*} Corresponding author. E-mail: yhzhang@pku.edu.cn

significant impacts on global radiation budget and thus contributed to the issue of global climate change (Hudman et al., 2004). Overall, it is important to review the available O_3 records in China with the ancillary environmental and emission changes in major Chinese city clusters like PRD to evaluate the near surface changes of the ambient O_3 concentrations and therefore contribute to the planning of the regional or national O_3 mitigation options.

For the time being, knowledge of the long-term O_3 trends in China is still limited due to the lack of longterm measurements compared to that of Europe and United States (Parrish et al., 2012 and reference therein). The O₃ concentration observed in Lin'an station, a regional background site in eastern China, showed an increase of the variation amplitude of the observed O₃ concentrations with a slight decreasing trend (-0.37 ± 0.23 ppbV/yr) of the monthly mean values during the period of 1991-2006 (Xu et al., 2008). The O₃ concentration at a coastal site (Hok Tsui) in Hong Kong increased by 0.58 ppbV/yr during 1994-2007, which was attributed to increased emissions of NO₂ (and possibly volatile organic compounds (VOC) as well) in the upwind coastal regions of mainland China (Wang et al., 2009). Tang et al. (2009) diagnosed an O₃ increasing trend of (1.1 ± 0.5) ppbV/yr during 2001–2006 in Beijing due to the reduction of NOx emissions and elevated VOC emissions. Ding et al. (2008) abstracted a positive O₃ trend of 2%/yr during 1995–2005 in Beijing toward the enhanced anthropogenic NOx emissions in Beijing and surrounding areas. In contrast, an O₃ trend of 0.96 ppbV/yr diagnosed for Taipei during 1994-2005 was caused by a decrease of the titration effect due to the reduced NO concentration so that the total oxidant (Ox = $O_3 + NO_2$) was conserved (Chou et al., 2006).

To reveal air pollution levels and long-term variation trends of various pollutants in PRD, a comprehensive Regional Air Quality Monitoring Network was established in PRD by Guangdong Provincial Environmental Monitoring Centre and Environmental Protection Department of the Hong Kong Special Administrative Region under the framework of the Hi-Tech Development Program (863) of China (Zheng et al., 2010). The network consists of 16 automatic air quality monitoring stations (**Fig. 1**) which are well distributed in different geochemical regimes to characterize the ambient conditions of rural, suburban and urban regions. In the present study, we attempt to abstract the O_3 and Ox changes during 2006–2011 as characterized by this network with cluster and regression analysis. We explored the possible driving forces on the possible links to the changes of precursor emissions.

1 Data and methods

1.1 Data sources

 O_3 , NO and NOx concentrations over PRD from 1 January 2006 to 31 December 2011 were measured by 16 monitoring stations in the Regional Air Quality Monitoring Network of PRD (**Table 1**). O_3 and NO_2 in Liyuan were measured by OPSIS AR500 Analyzer with differential optical absorption spectroscopy from Sweden. O_3 in other 15 stations was measured by Thermo Scientific 49C O_3 analyzer with UV photometric technology from USA. NO_2 in other stations was measured by Thermo Scientific 42C NO-NO₂-NOx Analyzer with chemiluminescence technology from USA.

For comparison, we also collected O_3 data from other open sources (**Table 2**). Hourly NO, NO₂ and O₃ concentrations during 2000–2011 in Tap Mun, Tsuen Wan and Tung Chung and the annual average O_3 con-

Table 1 Regional air quality monitoring stations in Pearl River Delta (PRD)				
Station (City)	Date	Longitude (°)	Latitude (°)	Elevation (m)
Chengzhong (Zhaoqing)	2006-2011	112.47	23.05	21
Xiapu (Huizhou)	2006-2011	114.41	23.08	49
Tap Mun (Hong Kong)	2000-2011	114.36	22.47	26
Jinguowan (Huizhou)	2006-2011	114.38	22.94	77
Tung Chung (Hong Kong)	2000-2011	113.94	22.29	34.5
Tianhu (Guangzhou)	2006-2011	113.62	23.65	251
Jinjuzui (Foshan)	2006-2011	113.27	22.82	27
Wanqingsha (Guangzhou)	2006-2011	113.55	22.71	13
Donghu (Jiangmen)	2006-2011	113.08	22.59	17.5
Tsuen Wan (Hong Kong)	1999-2011	114.11	22.37	21
Tangjia (Zhuhai)	2006-2011	113.59	22.35	24
Zimaling Park (Zhongshan)	2006-2011	113.40	22.51	45
Huijingcheng (Foshan)	2006-2011	113.10	23.00	24
Haogang (Dongguan)	2006-2011	113.74	23.03	18
Luhu Park (Guangzhou)	2006-2011	113.28	23.15	30
Liyuan (Shenzhen)	2006–2011	114.10	22.55	38

Download English Version:

https://daneshyari.com/en/article/4454785

Download Persian Version:

https://daneshyari.com/article/4454785

Daneshyari.com