
Computer Communications 81 (2016) 1–11

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Reducing your local footprint with anyrun computing

Alan Ferrari ∗, Silvia Giordano , Daniele Puccinelli

Institute for Information Systems and Networking, University of Applied Sciences of Southern Switzerland (SUPSI), Switzerland

a r t i c l e i n f o

Article history:

Received 2 July 2015

Revised 14 December 2015

Accepted 22 January 2016

Available online 1 February 2016

Keywords:

Code offloading

Computation offloading

Opportunistic computing

Bayesian network

Software profiling

a b s t r a c t

Computational offloading is the standard approach to running computationally intensive tasks on

resource-limited smart devices, while reducing the local footprint , i.e. , the local resource consumption.

The natural candidate for computational offloading is the cloud, but recent results point out the hidden

costs of cloud reliance in terms of latency and energy. Strategies that rely on local computing power have

been proposed that enable fine-grained energy-aware code offloading from a mobile device to a nearby

piece of infrastructure. Even state-of-the-art cloud-free solutions are centralized and suffer from a lack

of flexibility, because computational offloading is tied to the presence of a specific piece of computing

infrastructure. We propose AnyRun Computing (ARC), a system to dynamically select the most adequate

piece of local computing infrastructure. With ARC, code can run anywhere and be offloaded not only

to nearby dedicated devices, as in existing approaches, but also to peer devices. We present a detailed

system description and a thorough evaluation of ARC under a wide variety of conditions. We show that

ARC matches the performance of the state-of-the-art solution (MAUI), in reducing the local footprint with

stationary network topology conditions and outperforms it by up to one order of magnitude under more

realistic topological conditions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Though mobile smart devices are becoming increasingly pow-

erful, resource-intensive tasks are still well beyond their reach.

Smartphones and tablets are still no match for complex tasks such

as pattern matching or face recognition algorithms. Computational

offloading is the standard approach to reduce the local footprint ,

i.e. , the local resource consumption of smart devices. With compu-

tational offloading, a set of programmatic instructions or even an

entire program are run onto a remote device. The cloud appears

to be the natural place to offload to, as it offers virtually unlim-

ited resources and computing power. Internet connectivity is be-

coming truly ubiquitous, and at the same time the Internet is be-

coming increasingly cloud-centric. It is far more cost-effective to

outsource resource-intensive tasks to a powerful, dedicated, high-

performance computing infrastructure than to run them locally.

Nevertheless, in spite of its undeniable benefits, cloud access is still

highly inefficient for the offloading device in terms of latency and

energy consumption, as shown by recent research that quantifies

the local footprint of cloud access [1] . Though large corporations

with a stake in cloud computing label it as green, cloud computing

∗ Corresponding author. Tel.: +41 58 666 65 83.

E-mail addresses: alan.ferrari@supsi.ch , alan.ferrari@gmail.com (A. Ferrari),

silvia.giordano@supsi.ch (S. Giordano), daniele.puccinelli@supsi.ch (D. Puccinelli).

is far from green when one accounts for the cost of the informa-

tion transfer between the cloud and client devices [2] . Cloud com-

puting does save computing energy, but such savings are generally

offset by the energy cost of offloading experienced by end devices.

This is critical if the end device that interacts with the cloud is a

mobile smart device, where battery lifetime and CPU usage are key

concern.

In recent years, several approaches to (more or less) cloud-free

offloading [1,3,4] have been proposed, and their details are pro-

vided in Section 2 . Though these cloud-free offloading schemes

are extremely valuable, they are not very flexible because they

all require dedicated computing resources to run the offloaded

code. Because using a remote machine over a WAN results in in-

creased latency and suboptimal energy consumption, as shown in

[1] , for best results the dedicated computing hardware should be

within the same LAN as the devices that need to offload their code.

Thus, state-of-the-art cloud-free offloading generally lacks flexibil-

ity because dedicated resources need to be known a priori, and

the offloading device is bound to share a LAN link with such re-

sources. Using an analogy with the unicast addressing methodol-

ogy, we refer to this flavor of computational offloading as unirun

computing .

The goal of any offloading device is to minimize its local foot-

print, or at least reduce it compared to local execution. For the

sake of flexibility, rather than having to offload to a specific high-

end resource and being confined to a specific LAN, it would be

http://dx.doi.org/10.1016/j.comcom.2016.01.006

0140-3664/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comcom.2016.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2016.01.006&domain=pdf
mailto:alan.ferrari@supsi.ch
mailto:alan.ferrari@gmail.com
mailto:silvia.giordano@supsi.ch
mailto:daniele.puccinelli@supsi.ch
http://dx.doi.org/10.1016/j.comcom.2016.01.006

2 A. Ferrari et al. / Computer Communications 81 (2016) 1–11

preferable for a smart device to be able to offload to another smart

device with enough resources.

To overcome the limitations of state-of-the-art computational

offloading strategies and dynamically leverage any suitable device,

in this paper we propose (ARC), a system for the reduction of the

local footprint of a mobile smart device. The terminology anyrun

computing is chosen to draw an analogy with anycast addressing.

With ARC, code is offloaded whenever possible not only to ded-

icated (fixed) devices, but also to peer devices. The ability and flex-

ibility to offload to the best resources available is of paramount im-

portance in a world of heterogeneous devices with varying levels

of computing power and resources.

With ARC, any encountered peer can play the role of the

offloading device and offloading decisions are made based on

Bayesian statistics, whose simplicity makes them particularly suit-

able to relatively limited resources of mobile smart devices.

In this paper we offer the following research contributions:

• a detailed system description of ARC;

• a thorough evaluation of ARC in a wide variety of conditions on

a custom testbed;

• a comprehensive overview of the benefits of anyrun computing

compared to unirun computing.

This paradigm drastically differs to standard device-cloud(let)

architecture (e.g. the one we found in MAUI [1]) because it lever-

ages any possible devices thus it breaks down the physical link to

cloud(let).

As further motivation for ARC, we offer two examples of use

cases where the benefits of ARC are made clear.

Home gaming. Though higher-end devices are generally available

to smartphone users while at home, smartphones enable gaming

experiences that cannot be achieved on desktop machines, lap-

tops, or even tablets thanks to the availability of sensing devices

and touch displays. While modern smartphones are equipped with

HD screens and GPU to augment the visualization and the 3D ren-

dering quality, their capabilities are much more limited than lap-

tops. As an example, Google’s Nexus 5 uses the Adreno 330 graphic

board, which is over ten times slower than the Mac Book Pro’s

HD Graphics 40 0 0 graphics card. The performance gap is an in-

evitable byproduct of the different form factor and power draw re-

quirements of smartphones. With ARC, GPU computations can be

dynamically offloaded to any available higher-end machine; in a

home gaming scenario, heavy computational activities (e.g. 3D ren-

dering) can be offloaded to the smartphone’s user higher-end de-

vices to drastically improve the gaming experience.

Computation as a service. Just like wireless communication (WiFi)

is offered as a service by many businesses (especially franchised

chains), communication could also be offered as a service to dy-

namically augment the computing capabilities of smartphones. Of-

floading computationally intensive tasks from smartphones to lo-

cally available computing infrastructure would contribute to keep-

ing customers on the premises for longer periods of time, con-

tributing to higher sales volumes. With ARC, the offloading would

be carried out dynamically to maximize the quality of experience

of the user so that desktop- and laptop-grade computation can be

accessed on smartphones without the energy and latency penalty

of cloud access and with no need for prior knowledge of the high-

end computing resources available. Moreover, ARC would also en-

able the provision of computation as a service by means of the

resources of other users, which would be feasible within a spe-

cific community of subscribers. Much like users of ridesharing ser-

vices (such as Uber [5]) can access transportation as a service us-

ing resources of other users, users of ARC could achieve something

similar for computation as a service. (We view the existence of a

specific community of subscribers as a prerequisite for the viability

of this model to enable compensation schemes for users lending

their own computing resources.)

2. Related work

The ubiquitous and pervasive computing vision is finally be-

coming a reality as portable devices continue to become more

and more widespread and powerful [6,7] . The latest generations of

portable smart devices are extremely resource-rich, but they can-

not compete with higher-end computing devices when it comes

to computationally intensive tasks [8] . Cloud computing is now

viewed as a natural solution to overcoming the limitations of mo-

bile devices. Computational offloading (a.k.a. code offloading) is

a solution to augment the capabilities of mobile systems by mi-

grating computation to more resourceful devices (such as cloud

servers) [9] . With the uptake of mobile smart devices, computa-

tional offloading is no longer restricted to the cloud, but can also

target resource-rich(er) devices.

Given that smart devices generate a huge amount of hetero-

geneous sensory data that require plenty of processing power,

it has been suggested that a mobile phone sensing architecture

should rely on the mobile computing cloud [10] , so that a smart-

phone can outsource resource-intensive tasks to a remote high-

performance computing system reachable over the Internet. On the

one hand, the idea of remote execution [11] and cyber-foraging

[12] are first-class citizens in the world of pervasive comput-

ing, and the mobile computing cloud appears to be the natu-

ral choice [10] , because portable smart devices will always be

relatively resource-constrained compared to their fixed counter-

parts. As an example, the CloneCloud system [13] leverages exe-

cution migration techniques to clone a smartphone’s state to the

cloud so that computationally-intensive applications are run on

a virtual smartphone clone within the cloud before reintegrat-

ing the results from the cloud back into the actual smartphone.

On the other hand, the high-performance computing resources

that form the computing cloud are typically available at a remote

location, and the energy footprint of the data transfer may be

significant [14] .

To address the inherent resource-poverty of mobile terminals

along with the setbacks of relying on distant clouds, the cloudlet

model [3] has been proposed by Satyanarayanan et al., who em-

pirically show the limitations of WAN-based cloud solutions and

propose a novel approach based on accessing high-resource de-

vices located in close proximity. The ThinkAir framework from

Kosta et al. [4] proposes a novel computational offloading archi-

tecture based on smartphone’s virtualization in the cloud. The au-

thors provide method level computational offloading. The offload-

ing strategy is chosen based on a method’s energy footprint and

device status in terms of resource usage and network connectiv-

ity. The authors show that the offloading gain in terms of energy

consumption is one order of magnitude greater compared to local

execution.

The Mobile Assistance Using Infrastructure (MAUI) system [1]

has been recently proposed by Cuervo et al. to enable the fine-

grained energy-aware offload of code from a mobile device to a

MAUI node, i.e. , a nearby piece of infrastructure connected to the

mobile device by a high-performance WLAN link. MAUI aims to

reduce the energy footprint of mobile devices by delegating code

execution to remote devices; it dynamically selects the function to

be offloaded depending on the expected transmission costs of the

network and provides an easy way for the developers to use the

framework in their code. mobile terminals can leverage cloudlets

of nearby infrastructure that can be accessed over Wi-Fi. This is

certainly a promising strategy, especially given the recent results

on the advantages of augmenting 3G with Wi-Fi [15] . It is shown

Download English Version:

https://daneshyari.com/en/article/445663

Download Persian Version:

https://daneshyari.com/article/445663

Daneshyari.com

https://daneshyari.com/en/article/445663
https://daneshyari.com/article/445663
https://daneshyari.com

