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Stream sediment geochemical data represent compositional materials derived from various sources, including
single ormultiple lithologic units, soil types, rocks types, etc. In order to delineate geochemical anomalies, stream
sediment geochemical data are usually subjected to suitable multivariate analysis, and not simply using univar-
iate threshold values because these are not reliable for delineation of geochemical anomalies in areas with com-
plex geological units. Relationships among multiple major/trace elements and rock types are more important
than singlemajor/trace elements for delineation of geochemical anomalies. In this studywe present an approach
based on robust stepwise multiple regression using values major oxides (SiO2, Al2O3, Fe2O3, MnO, and MgO) in
stream sediments to predict elemental content related to rock types and to recognize geochemical anomalies.
The major/trace element data were subjected to isometric logratio transformation to address the compositional
data closure problem. For further examination of the stepwise regressionmethod, its performancewas compared
to robust principal components analysis (RPCA),median+2MAD and concentration-area (C-A) fractalmethods.
The results show that multi-element anomalies obtained by the stepwise regression method, compared to those
obtained by the othermethods, have stronger spatial associationwith the knowndeposits, such as Chichaklo and
Ay-Ghale-Si in the Takab 1:25,000 scale geological map (NW) Iran, and the anomalies have stronger spatial cor-
relation with structural features and prospects, and thus can be used as guides to new exploration targets.
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Keywords:
Stepwise regression
Geochemical exploration
Geochemical anomaly
Logratio transformation
Takab

1. Introduction

Recognition of anomalous and background values in a stream sedi-
ment geochemical dataset is one of the basic tasks in mineral explora-
tion. An anomaly can be defined as a concentration of element or
metal that is greater than a threshold concentration value (i.e., upper
limit of background population). Stream sediments are composite ma-
terials derived from the weathering and erosion of one or more sources
upstream of a sample site. Therefore, uni-element contents of stream
sediments are derived from multiple (usually background and rarely
anomalous) sources. In most cases, a major proportion of variation in
uni-element contents in stream sediment is due to lithological units un-
derlying the areas upstream of stream sediment sample sites (Carranza,
2010b). Recognition of anomalies from background in a regional-scale
stream sediment geochemical dataset is an important stage of mineral
exploration to delineate potential areas for detailed investigation at
finer scales (Deng et al., 2010; Nazarpour et al., 2015c; Pazand et al.,

2011; Rantitsch, 2000; Shamseddin Meigoony et al., 2014; Rezaei et
al., 2015).

Various statistical methods have been used to process geochemical
data in order to determine threshold values. Statistical quantities, such
as the mean, standard deviation (sdev) and percentiles, have been
used to define threshold for separating anomalies form background.
For example, geochemical anomalies have been defined as values great-
er than a threshold defined as the 75th or 85th percentile, and
mean + 1sdev or mean + 2sdev. Based on such statistical quantities,
there are two main groups of methods for determining threshold
values: the first group includes frequency-based univariate methods
such as mean ± 2sdev (Hawkes and Webb, 1962), probability graphs,
box-plot and Q-Q plot (Govett et al., 1975; Miesch, 1981; Sinclair,
1976; Stanley and Sinclair, 1989) and second group includes variance-
basedmultivariatemethods to define anomalous multi-element associ-
ations (e.g., Aitchison, 1986; Nazarpour et al., 2015a and b).

The application of a single uni-element threshold value, defined by
frequency-based methods, to delineate anomalies often results in
false-negative anomalies in areas with low background values or false-
positive anomalies in areas with high background values, thereby
undermining the utility of geochemical exploration to define new tar-
gets. A reasonable way to solve this problem is to determine the
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underlying relationships among geochemical anomalies and plausible
causative geological processes. Using rock types to represent geological
processes is a common logical solution tool to recognize geochemical
anomalies in complex geological settings or in overburden-covered
areas (Hao et al., 2014), because there is often a clear relationship be-
tween rock types and major oxide content of rocks (Cohen et al.,
2012; Reimann and Garrett, 2005). For elimination of lithological effects
on uni-element data, one can use a multiple regression model to esti-
mate element values and then subtract these values from measured el-
ement values to yield geochemical residuals that may or may not be
related to anomalous sources (Bonham-Carter and Goodfellow, 1986;
Hao et al., 2014).

Another main limitation of the above-mentioned methods is that
they do not take into account the variability of spatial-statistical distri-
bution of geochemical data. However, different areas can differ in rock
compositions or have experienced different geological processes,
which result in different geochemical thresholds. Therefore, the
above-mentioned methods are of limited use in situations where
there are extensive overlaps between background and anomalous
values, or where weak anomalous values are hidden within the strong
variance of background (Cheng, 2007).

The spatial-statistical distribution of geochemical data can be char-
acterized using fractal geometry (Mandelbrot, 1983), which is a branch
of non-linear mathematics that has been widely applied in the
geosciences (e.g., Afzal et al., 2010; Agterberg et al., 1993; Ali et al.,
2007; Carranza, 2008; Cheng et al., 1994; Deng et al., 2010; Sim et al.,
1999; Turcotte, 1986; Wei and Yang, 2010). Several fractal and
multifractal models, including concentration-area (C-A) (Cheng et al.,
1994, Nazarpour et al., 2015a), spectrum-area (S-A) (Cheng, 2004;
Cheng et al., 2000; Xu and Cheng, 2001), concentration-distance (C-D)
(Li et al., 2003), concentration-volume (C-V) (Afzal et al., 2011) and
number-size (N-S) (Agterberg, 1995; Deng et al., 2010; Mandelbrot,
1983; Turcotte, 2002; Wang et al., 2010), have been developed for var-
ious applications in the geosciences including analysis of geochemical
data.

In addition to the above-mentioned main limitations of frequency-
and variance-based methods for anomaly recognition, geochemical
data are compositional (i.e., contribution of parts to some whole),
which carry exclusively relative information (Aitchison, 1986). For ex-
ample, if the SiO2 content of an igneous rock is 68% of thewhole weight,
then the value of MgO will only be equal to or b32%. This means that
geochemical data are not absolute values, but only provide relative in-
formation of certain element in a whole sample (Aitchison, 1986).
Therefore, compositional data represent a closed number system and
should be opened prior to understanding of realistic relationships
among compositions (Filzmoser et al., 2009; Carranza, 2011;
Nazarpour et al., 2015b). Therefore, it is crucial to apply an appropriate
transformation to geochemical data prior to using anymethod ofmulti-
variate analysis. The log-ratio (logarithm of a ratio) transformation
methodology proposed by Aitchison (1986) represents a powerful set
of techniques to open compositional data. Three log-ratio transforma-
tions have been proposed for opening of compositional data: (1) addi-
tive log-ratio (alr) transformation (Aitchison, 1986); (2) centered log-
ratio (clr) transformation (Aitchison, 1986) and (3) isometric log-ratio
(ilr) transformation (Egozcue et al., 2003). These transformations
allow for the application of standard statistical methods to transformed
data, although with some limitations or modifications. In this study, the
stream sediment geochemical data were ilr-transformed prior to statis-
tical analysis.

Finally, exploration geochemical data typically comprise a large set
of geochemical variables (e.g., major oxides, trace elements/metals)
and the choice of which of these variables can be used as predictor (or
independent) and response (or target) variables is a common problem
in attempting to describe relationships among such variables through
regression analysis. However, considering that lithology is a major
source of variation of trace elements/metals and that lithological units

are composed of various major oxides (e.g., SiO2, Al2O3, Fe2O3, MnO,
and MgO), major oxides are typically used as predictor variables in
lieu of lithological units. Determining themost significant predictor var-
iables, and therefore reliable estimates of element values, can be
achieved through stepwise multiple regression.

This paper focuses on the identification of geochemical anomalies
in the Takab 1:25,000 scale geological map sheet by using stream
sediment geochemical data to derive geochemical residuals of trace
elements, which would indicate areas of enrichment (e.g., due to
mineralization) or depletion. Previous researches have derived geo-
chemical residuals by applying stepwise multiple regression using
trace elements as dependent variables (or targets for exploration)
and areal proportions of lithologic units as independent variables
(predictors) or as proxies of the influence of lithology on trace
element background concentration (Bonham-Carter and
Goodfellow, 1984, 1986; Carranza and Hale, 1997; Moon, 1999;
Carranza, 2010a,b). However, we argue that using areal proportion
of lithologic units as predictors would depend on the availability of
a geological map and the results would vary depending on the
scale of the lithologic map used. In this paper, we used major ele-
ments as independent variables (predictors) or as proxies of the in-
fluence of lithology on trace element background concentration.
Results from this proposed methodology are validated using
lithogeochemical data and by comparing with results from using
the median + 2MAD for exploratory data analysis (EDA), concentra-
tion- area (C-A) fractal model and robust principal component anal-
ysis (RPCA) as two effective approaches to separate geochemical
anomalies from background in stream sediment geochemical com-
positional data.

2. Methods

2.1. Exploratory data analysis (EDA)

In EDA of geochemical exploration data, the median + 2MAD value
was originally used to identify extreme values and act as threshold for
further inspection of large data sets (Hawkes and Webb, 1962; Zheng
et al., 2014). The EDA was first established by Tukey (1977), was devel-
oped further by Kürzl (1988), and then was used by many researchers
in modeling of geochemical anomalies (e.g., Ali et al., 2007; Carranza,
2008, 2010a,b; Nazarpour et al., 2014). TheMAD is the median of abso-
lute deviations of individual dataset values (Xi) from the median of all
dataset values (Tukey, 1976):

MAD ¼ median Xi−median Xið Þj j: ð1Þ

2.2. Concentration-area (C-A) fractal model

The C-A fractal model was first introduced by Cheng et al. (1994) for
recognition of geochemical anomalies from background. It has the fol-
lowing general forms (Cheng et al., 1994):

A ρ≤υð Þ∝ρ−a1 ;A ρNυð Þ∝ρ−a2 ð2Þ

where A(ρ) denotes area with background concentrations (ρ) less
than or equal to a threshold concentration (υ) or area with anoma-
lous concentrations (ρ) greater than the threshold concentration
(υ), a1 and a2 are slopes of straight lines fitted to log-log plots of ρ
versus A(ρ).

Cheng et al. (1994) proposed two approaches to calculate A(ρ): (1)
the A(ρ) is area enclosed by a contour of concentration value (ρ) on a
geochemical map derived by interpolation of the original concentration
values using a weighted moving average method; and (2) A(ρ) is ob-
tained by application of the box-counting method to the original con-
centration values. Distinct patterns, each corresponding to a set of
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