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Like the statistical analysis of compositional data in general, spatial analysis of compositional data requires
specific tools. A historical overview of their development is presented in three steps: (a) the recognition of the
problem, known as spurious spatial covariance, (b) first attempts to use the logratio approach, and (c) the
application of the principle of working in coordinates using isometric logratio representations. Also mentioned
are the use of matrix-valued variation-variograms as a tool to model crossvariograms, and the simplicial
approach to indicator kriging, that solves inconsistencies in the standard approach to indicator kriging.
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1. Introduction

According to Chilès and Delfiner, (2012), the term geostatistics was
introduced by Matheron, (1962) to designate his own methodology
for ore reserve estimation. Since then, geostatistics expanded amazing-
ly, as themethodology finds application inmany fields, not only in geo-
and environmental sciences. Independently, in the 1980's, J. Aitchison
started developing compositional data analysis (CoDa) (Aitchison and
Shen, 1980; Aitchison, 1982; Aitchison, 1986) introducing what nowa-
days is known as the log-ratio approach. Although most type of data to
which geostatistics is applied are compositional, like ore grade, chemi-
cal or mineralogical composition of rocks, contaminants in air or
water, it was not recognised until 1984 that spurious spatial correlation
might be at work (Pawlowsky, 1984). We summarise in what follows
the steps that have been undertaken since then to solve the problems
derived from the compositional character of some spatially dependent
data. We limit our contribution to the historical development, omitting
most formal derivations which can be found in the references cited.

2. Spurious spatial covariance

The problem of spurious spatial covariance of regionalized composi-
tions, or r-compositions for short, was first stated in Pawlowsky, (1984).
The results are illustrative, and are therefore briefly exposed.

According to our present understanding, a random vector, Z, with D
strictly positive components representing parts of a whole, is a compo-
sition if it carries only relative information (Pawlowsky-Glahn et al.,

2015c). Note that the term relative information is equivalent to informa-
tion lies in the ratios between components, not in the absolute values. The
same definition holds for a spatially distributed random vector, Z(x), at
any point x of a spatial domain R.

In 1984, r-compositions were still understood as random vectors sub-
ject to a constant sum constraint, or closed r-compositions. We know now
that compositions in general, and r-compositions in particular, are equiv-
alence classes, and that a closed composition is just a representation. This
means, that the results obtained under this assumption hold for any rep-
resentation of the equivalence classes.

For the understanding of spurious spatial covariance or correlation, it
is mathematically easier to work with a closed representation. Therefore,
in what follows, we work with a closed r-composition, i.e. with a spatially
distributed random vector, Z (x), with D strictly positive parts or compo-
nents, that is subject to a constant sum constraint for all x∈R,

XD
i¼1

Zi xð Þ ¼ κ ; ð1Þ

with κ a given positive constant depending on the units of the random
vector. The constant κ is usually 1 (parts per unit), 100 (percentages),
or 106 (parts per million).

Following Matheron, (1965), geostatistics can be used with
regionalized variables satisfying stationarity conditions. Second
order stationarity requires regionalized variables to have a constant
mean and the autocovariance only depending on the lag between
pairs of variables Z (xj) and Z (xj); a less stringent condition is the
intrinsic hypothesis, which assumes that the first order differences
are second order stationary. Under these kind of assumptions,
geostatistics builds on modelling the mean and the spatial
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autocovariance, or related parameters, like the variogram. The follow-
ing development handles the components of the closed r-composition
Z(x)=(Z1(x),Z2(x),… ,ZD(x)) at two spatial locations, say x and x + h in
R, where h denotes the lag between them.

From Eq. (1), for any lag h it holds

XD
i¼1

Zi xð Þ−Zi xþ hð Þð Þ ¼
XD
i¼1

Zi xð Þ−
XD
i¼1

Zi xþ hð Þ ¼ κ−κ ¼ 0: ð2Þ

Hence, multiplying both sides of Eq. (2) by (Zj(x)−Zj(x+h)),

XD
i¼1

Zi xð Þ−Zi xþ hð Þð Þ Z j xð Þ−Z j xþ hð Þ� � ¼ 0:

for any j=1,2,… ,D. Taking expectations,

XD
i¼1

cov Zi xð Þ−Zi xþ hð Þð Þ; Z j xð Þ−Z j xþ hð Þ� �� � ¼ 0: ð3Þ

Given that a variance is always positive, Eq. (3) can be rewritten for
any j=1,2,… ,D, as

var Z j xð Þ−Z j xþ hð Þ� �
Z j xð Þ−Z j xþ hð Þ� �� �

¼ −
X
i≠ j

cov Zi xð Þ−Zi xþ hð Þð Þ Z j xð Þ−Z j xþ hð Þ� �� �
: ð4Þ

Note that Eq. (4) depends only on the fact that Z(x) is the closed rep-
resentation of an r-composition, and not on the type of spatial depen-
dence of its components. Eq. (4) implies that non-stochastic factors
determine the value of cross-covariances. They cannot be all null simul-
taneously, as the variance is, by definition, always positive. Also, if the
closed r-composition was generated by closure of independent random
variables, a dependence will appear, which is spurious, as it is not gen-
erated by the phenomenon itself (Pawlowsky, 1984). This result is well
known for compositional data in general as the closure problem (Chayes,
1960). It has many implications in standardmultivariate analysis which
can be directly extended to r-compositions.

For a closed intrinsic r-composition Z(x), Eq. (4) can be written in
terms of variograms, γj(h), and crossvariograms, γij(h),

γ j hð Þ ¼ −
X
i≠ j

γij hð Þ; j ¼ 1;2;…;D: ð5Þ

for any lag h. As stated in Pawlowsky, (1984), the obvious conclusion is
the need of non-zero cross-variograms for r-compositions, some of
which have to be negative—as the variogram is, by definition, positive.
It is clear that the only case in which cross-variograms could be all
null or all positive is that the variogram is null, i.e. the r-composition
is constant. The fact that variograms and cross-variograms of r-
compositions are subject to non-stochastic controls leads to the conclu-
sion that, when based on raw data, they are spurious.

Under the assumption that the sample space is the whole real
space endowed with the standard Euclidean space structure and ge-
ometry, or a subset with the induced structure and geometry, for
Z(x) satisfying the second order stationary hypothesis, the following
equalities hold:

XD
i¼1

Zi xð Þ ¼ κ ;

XD
i¼1

E Zi xð Þð Þ ¼
XD
i¼1

mi ¼ κ;

XD
i¼1

Zi xð Þ−miÞð Þ ¼ 0;

ð6Þ

with E(Zi(x))=mi, the expected value of Zi(x), i=1,2 ,… ,D. Multi-
plying both sites of Eq. (6) by (Zj(x)−mj) and taking expectations, it
holds

XD
i¼1

cov Zi xð Þ−mið Þ Z j xð Þ−mj
� �� � ¼ 0; j ¼ 1;2;…;D; ð7Þ

and therefore, for any lag h,

C j hð Þ ¼ −
X
i≠ j

Cij hð Þ; j ¼ 1;2;…;D; ð8Þ

where Cj(h) stands for the auto-covariance of component j, and Cij(h) for
the cross-covariance of components i and j. Consequently, also the
cross-covariances cannot be all null, and some of them have necessarily
to be negative. Being subject to algebraic, non-stochastic, controls, they
are spurious.

As summarised in Pawlowsky-Glahn and Burger, (1992), the prob-
lems derived from the nature of spatially distributed compositional
data, when the raw data are analysed, are

1. The mathematical necessity of at least one non-zero cross-covariance.
2. The bias towards negative cross-covariances.
3. The singularity of the cross-covariance matrix for any lag h.
4. The distorted description and interpretation of the spatial depen-

dence between the compositional variables under study.
Nowadayswe know that the problemof spurious spatial covariance or
correlation is generated by the fact that compositional data are
analysed as real data, with the usual Euclidean geometry. In fact,
most statistical methods have been developed for real data without
constraints under the implicit assumption that the Euclidean geometry
holds. This means that the difference between observations is mea-
sured as an absolute difference, that the sum and its opposite make
sense. This holds even with constraints, i.e. restricting the support of
the sample to a subset of real space without changing the geometry.

3. The beginning — 1986: the additive log-ratio approach

The initial approach (Pawlowsky, 1986; Pawlowsky-Glahn and Olea,
2004) was to use the additive log-ratio (alr) transformation (Aitchison,
1982; Aitchison, 1986). The r-composition is transformed into log-ratios as

W xð Þ ¼ ln
Z1

ZD
; ln

Z2

ZD
;…; ln

ZD−1

ZD

� �
; :

thus obtaining a regionalized vector of D–1 components which can be
treated using cokriging. As we are aware nowadays, this was done
under the implicit assumption that the Euclidean geometry holds for
alr transformed vectors. Under this assumption the alr-transformation
leads to BLU (Best Linear Unbiased) estimates (Pawlowsky-Glahn and
Egozcue, 2002). Nevertheless, soon problems appeared, like the fact
that cokriging seamed to lead to worse results than kriging, a fact that
stands in contradiction with theoretical results (Pawlowsky-Glahn
and Olea, 2004, p. 160–161). The reasons for these problems could not
be explained in a consistent way until the algebraic–geometric struc-
ture of the sample space of compositional data was recognised
(Aitchison et al., 2002; Billheimer et al., 2001; Pawlowsky-Glahn and
Egozcue, 2001) and the alr was understood within this framework. Es-
sentially, the problem was the computation of variances and covari-
ances using the alr coordinates, which at that moment was not clear.

The covariance structure of compositional data can be described by
the so-called variation matrix (Aitchison, 1982; Aitchison, 1986). This
matrix contains the variances of each possible log-ratio of pairs of com-
positional parts. It was shown that the variation matrix completely de-
scribes the covariance structure of the composition, independently of
which transformation is used to analyse the data. These facts inspired
the introduction of the spatial structure of r-compositions, first defined
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