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In mineral prospectivity mapping (MPM) logistic functions have been widely used to transform mineral explora-
tion data or prospectivity values into the [0, 1] range to generate fuzzified evidential maps or to rank target areas
as fuzzy prospectivity models. Recently researchers applied logistic functions to assign fuzzy weights of
continuous-value spatial evidence. They assigned fuzzy weights to evidential features without using locations
of known mineral occurrences (KMOs) as in data-driven MPM and without discretization of evidential values
into some arbitrary classes as in knowledge-driven MPM to overcome exploration bias. However these methods
suffer exploration bias resulting from expert judgments in defining slope (s) and inflection point (i) of the logistic
Geological data function, which are defined by trial and error procedure. In this paper, the application of logistic transformation is
System of equations demonstrated to assign continuous weights to evidential layers of geochemical and geological data. The weights
Slope were assigned without discretization of spatial evidence values and without using the locations of KMOs, while
Inflection point the i and s values of the logistic function were defined by a data-driven way. For this, we applied systems of equa-
Logistic function tions including two equations and two unknown variables (i.e., i and s). Thus by solving the system of equations
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the two unknown variables, i and s, were defined.
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1. Introduction

There are two main approaches, data- and knowledge-driven, to as-
sign evidential weights and to combine various evidential maps for min-
eral prospectivity mapping (MPM) (Bonham-Carter, 1994; Carranza,
2008). In data-driven MPM, there is exploration bias (Coolbaugh et al.,
2007) resulting from accessibility factors and exploration criteria, be-
cause known mineral occurrences (KMOs) are used as training sites.
Thus, data-driven models of mineral prospectivity, in fact, supervised
models, are affected by locations of KMOs (e.g., Bonham-Carter, 1994;
Harris and Pan, 1999; Carranza, 2004, 2008, 2015; Nykdnen and Ojala,
2007; Nykdnen, 2008; Harris et al., 2003; Carranza and Laborte, 2015;
Ford et al., 2015; Geranian et al., 2015; McKay and Harris, 2015;
Mejia-Herrera et al., 2015). These models predict KMOs well but may
predict undiscovered deposits poorly (Coolbaugh et al., 2007); this is,
actually, stochastic bias and error. In knowledge-driven MPM methods,
there are exploration bias and uncertainty resulting from expert judg-
ments in traditionally discretization of continuous spatial values into
some arbitrary classes and then assigns the same weight to all values
in each class of evidential features (e.g., D'Ercole et al., 2000;
Knox-Robinson, 2000; Carranza and Hale, 2001; Porwal et al., 2003,
2004, 2006; Tangestani and Moore, 2003; Rogge et al., 2006; Lusty
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etal, 2012; Ford et al,, 2015; McKay and Harris, 2015). Thus, weighting
to evidential features in knowledge-driven methods of mineral
prospectivity is subjective and requires understanding of relationships
between evidential features and mineral deposit-type sought. There
are other MPM methods in which weights can be assigned to evidential
classes by using a hybrid of data- and knowledge-driven MPM methods
(e.g., Porwal et al., 2003, 2004, 2006; Cheng and Agterberg, 1999) or by
using knowledge-guided data-driven methods (Chung and Fabbri,
1993; Carranza et al., 2008; Billa et al., 2004; Roy et al., 2006; Cassard
et al., 2008). However, hybrid methods suffer from the same limitations
of data- and knowledge-driven methods in terms of assigning weights
to evidential classes. Thus, in the traditional MPM methods the relative
importance of every class of evidential values is not really evaluated as
proxy evidence of mineral prospectivity.

To overcome the above-mentioned problems in data- or knowledge-
driven MPM, researchers proposed data-driven methods to assign
weights to evidential features without using training data (Luo, 1990;
Chung and Fabbri, 1993; Carranza and Hale, 2002; Luo and
Dimitrakopoulos, 2003; Carranza, 2009a). However, these data-driven
methods make use of empirical functions, the choice of which are
based on expert knowledge, to estimate weights for classes of
discretized continuous values of evidence. Thus, these data-driven
methods suffer from the same limitation as knowledge-driven MPM
methods because of discretization of continuous-values of spatial data
that were discussed above.
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Recently, Nykdnen et al. (2008a); Yousefi et al. (2012, 2013, 2014),
and Yousefi and Carranza (2014, 2015a, 2015b) applied logistic func-
tions for fuzzification of continuous-value spatial evidence to overcome
exploration bias in data- and knowledge-driven MPM. For this, they
transformed continuous spatial values into logistic space using a logistic
function. So they assigned weights of continuous-value spatial evidence
without using locations of KMOs as in data-driven MPM and without
discretization of evidential values into some arbitrary classes based on
an analyst's expert opinion as in knowledge-driven MPM. Although
these methods overcome the problems of exploration bias resulting
from both discretization of continuous spatial values and locations of
KMOs in knowledge- and data -driven MPM, they still may suffer explo-
ration bias as well. This is because there are other types of exploration
bias resulting from 1) expert judgments in defining slope (s) and inflec-
tion point (i) of the logistic function, which are defined by trial and error
(Yousefi and Carranza, 2014, 2015a), 2) the selection of evidential data
for using in the modeling, and 3) selection of subjectively-defined func-
tions to be used for weighting.

In this paper, the application of logistic transformation is used to as-
sign continuous weights to evidential features, while the i and s of logis-
tic function are defined by a data-driven way without using trial and
error procedure. Thus, our main purpose is to answer the following
question: How are the logistic function parameters estimated by using
a data-driven way? In addition, we analyzed the effect of a number of
evidential layers in the prediction ability of prospectivity models. For
this, we examined both continuous weighting method by application
of logistic function and weighting to discretized evidential values by
using expert judgment for comparison purpose. There is no comparison
between continuous and discretized weighted evidential values in pre-
diction ability of prospectivity models in literatures, so we made a com-
parison between these two different weighting schemes. For this, we
applied system of equations including two equations and two unknown
variables (i.e., i and s). In the equations system there are two logistic
functions, one for minimum evidential value which must be assigned
with lowest weight (e.g., 0.01) and another for maximum evidential
value which must be assigned with highest weight (e.g., 0.99). Thus
by solving the equations system the two unknown variables, i and s
are defined without trial and error procedure. We illustrate the method
of definitions of i and s of logistic function by using a data-driven way for
mapping porphyry-Cu prospectivity in an area in the Kerman province
in southeast Iran.

2. The study area and data set

The study area is a small part of the Urumieh-Dokhtar magmatic arc
forming the Zagros Mountains in Iran, the same area studied by Yousefi
and Carranza (2014, 2015a). The study area (Fig. 1) measures
~2500 km? and is covered by the 1:100,000 scale quadrangle map of
Sabzevaran prepared by the Geological Survey of Iran (GSI) (Grabeljsek,
1956). To demonstrate the proposed method in this paper for defining i
and s of logistic function, we used a map of distances to intrusive contacts
(including granodiorites to granites and quartz-diorites) and a map of
faults density (FD). These maps were applied to depict heat-source and
structural controls on porphyry-Cu mineralization. Furthermore we
used geochemical evidence layers, distribution maps of Zn-Ag-As-Sb
and Cu-Pb factor scores as two multi-element geochemical signatures
of porphyry-Cu mineralization derived by Yousefi and Carranza
(2015a). These factor scores and consequently the geochemical
maps were derived from analyzing geochemical multi-element data in
the study area by using staged factor analysis method proposed by
Yousefi et al. (2012, 2014). We determined the appropriate cell or pixel
size for the evidential maps (e.g., Carranza, 2009b; Zuo, 2012) based on
the function of scale number recommended by Hengl (2006) and obtain-
ed a pixel size of 100 m x 100 m, which was used for all of the maps in this
study.

3. Methods and results
3.1. Logistic transformation

Transformation of variables to a new data space is a classical classifi-
cation approach to understand a pattern (Berthold and Hand, 2002). In
MPM, the aim is to classify an area into some discrete entities namely
highly prospective areas as targets for further exploration, areas with
very low priority for prospecting, and some classes between them.
Thus, MPM is a classification problem, and consequently, prospectivity
models can be portrayed as classified maps (Yousefi and Carranza,
2015a). Transformation of variables using a logistic sigmoid (or S-
shaped) function maps the whole real axis into a finite interval, e.g. [0,
1] range.

Yousefi and Carranza (2015b) demonstrated logistic sigmoid func-
tion can be used to transform individual evidential data values, which
derived from different mineral exploration data sets, into the same
space. So values in weighted evidential maps lie in the [0, 1] range, the
same space and the relative importance of the areas under prospecting
can be evaluated more efficiently. In this regard, there is a family of lo-
gistic functions (Theodoridis and Koutroumbas, 2006) that can be
used to transform a data set into logistic space based on the minimum
and maximum data values and slope variations between them
(Carranza and Hale, 2002; Porwal et al., 2003; Yousefi et al., 2012,
2013, 2014; Yousefi and Carranza, 2014, 2015a, 2015b, 2015c).
Tsoukalas and Uhrig (1997) and Nykénen et al. (2008a) used a logistic
function to transform continuous values into fuzzy space without
discretization. In this paper, we used the following logistic function ap-
plied by Yousefi et al. (2012, 2013, 2014), and Yousefi and Carranza
(2014, 2015a, 2015b) to transform the values of different evidential
data sets into the same space:
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(1)

where F, is a score in the [0, 1] range, fuzzy weight in logistic space, i
and s are inflection point and slope, respectively, of the logistic function,
and Ev is evidential value of each pixel in an input map (e.g., FD and the
value of proximity to features) for which Fg, is estimated. The parame-
ters i and s determine the shape of the logistic function and, hence,
the output fuzzy weights.

3.2. Defining i and s using expert opinion

Traditionally, for transforming spatial evidence values or
prospectivity values into the [0, 1] range, logistic functions have been
widely used to generate weighted (fuzzified) evidential maps or to
rank target areas as fuzzy prospectivity models (e.g., Bonham-Carter,
1994; Carranza and Hale, 2002; Porwal et al., 2003; Nykdnen et al.,
2008a; Carranza, 2008, 2009a; Lisitsin et al., 2013; Yousefi et al., 2012,
2013, 2014; Yousefi and Carranza, 2014, 2015a, 2015b). In the above-
mentioned application of logistic function for MPM, there are some pa-
rameters of the logistic function that are chosen arbitrarily. As Yousefi
and Carranza (2015a) mentioned, the chosen values for i and s of logistic
function are sought by trial-and-error procedure. For example the appli-
cation of Eq. (1) results in scores in the [0, 1] range. In this regard, var-
iation of output fuzzy membership values versus their corresponding
classes score was shown by Porwal et al. (2003). They assigned un-
bounded scores to the evidential classes subjectively, and, then trans-
formed the classes scores into [0, 1] range by using logistic function
for fuzzy logic MPM. For this, they defined i and s values subjectively.

In this paper, we examined different i and s in Eq. (1) for
transforming a continuous data set of FD values (Fig. 2) into [0, 1]
range, in fact fuzzy space, for comparison purpose. To generate the FD
map, the total length of faults (extracted from the geological map of
the area) was estimated per pixel of the study area (Fig. 2). As shown
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