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The trend surface analysis (TSA) and the spectrum–area (S–A) multifractal model are two popular methods to
identify geochemical anomalies. In this study, the robust principal component analysis (RPCA)was applied to in-
tegratemulti-geochemical variables in a regional stream sediment dataset related tomajor ore-forming elements
in southwestern Fujian (China). We applied the TSA and S–A model to decompose the integrated geochemical
pattern obtained from the RPCA and compared the results obtained from both methods. The obtained anomaly
maps were similar, with the high anomaly areas showing a strong spatial relationship with intrusions that are
related to Fe polymetallic mineralization, indicating that both the TSA and the S–A are useful tools to identify
geochemical anomalies. The S–A model, based on distinct anisotropic scaling properties, was better in revealing
local anomalies because it considered the spatial characteristics of the geochemical variables.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental task in geochemical exploration is the separation of
background patterns from geochemical anomalies, which are the direct
consequences of coupled physical and chemical processes occurring
within the upper crust of the Earth, due to various different geological
processes, leading to different mineralization types (Cheng, 1999;
Zhao et al., 2009; Zhao, 2014). To simulate the coupled physical and
chemical processes involved in ore-forming systems, the emerging
computational geoscience methods have been developed in recent
years through extensive and systematic research (e.g., Zhao, 2015;
Zhao et al., 2009, 2014b).

From the scientific point of view, an ore-forming system can be
treated as a nonlinearly-coupled mathematical problem involving
dynamic interactions between rock deformation, pore-fluid flow, heat
transfer, mass transport and chemical reaction processes (Alt-Epping
and Zhao, 2010; He et al., 2013; Hobbs et al., 2000, 2010; Liu et al.,
2011; Poulet et al., 2013; Schmidt Mumm et al., 2010; Zhao et al.,
2009). This kind of nonlinear coupled problem can cause thermody-
namic instability (e.g., Hobbs et al., 2004, 2007; Zhao et al., 1998,
2012), and physical and chemical dissolution-front instability
(e.g., Hobbs et al., 2008; Zhao et al., 2010, 2013), which are the main
dynamic mechanisms that control the formation of anomalous patterns
in ore-forming systems. Accurate simulation of these coupled processes
is the goal of emerging computational geoscience methods, which have
been widely employed to predict ore distribution patterns to assist

mineral exploration (Hobbs et al., 2000, 2010; Liu et al., 2011; Schmidt
Mumm et al., 2010; Zhao et al., 2009, 2014a).

On the other hand, early quantitative methods and techniques
such as probability graphs, mean, and percentiles have been devel-
oped for identification of geochemical anomalies based on a constant
geochemical threshold (Miesch, 1981; Sinclair, 1974, 1991; Stanley
and Sinclair, 1989). However, different subareas can differ in rock
composition or have experienced different geological processes,
which results in different geochemical thresholds. Therefore, these
methods are not adequate to identify weak geochemical anomalies
since many may be lost because of geochemical background variation.
In this study, TSA and S–Amodel were compared based on a case study
from southwestern Fujian Province (China).

2. Methods

2.1. Robust principal component analysis

The principal component analysis (PCA) is one of the most popular
methods of multivariate data analysis (e.g., Carranza and Hale, 1997;
Cheng, 2011; Rubio et al., 2000). The PCA converts high dimensional
data to a lower dimensional space based on a covariance or correlation
matrix. The main aim of the PCA is to explain as much data information
as possible from the least uncorrelated (principal) components. However,
geochemical data usually contain outliers and are heterogeneous. The
classical estimators (e.g., arithmetic mean, sample covariance matrix)
are sensitive to outliers, severely affecting the classical PCA results, and
rendering them meaningless (Filzmoser et al., 2010; Locantore et al.,
1999). Robust statistical approaches can resist some contamination,
which focus on the main data structure and reduce the influence of
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outliers. The robust PCA (RPCA) based onminimum covariance determi-
nant (MCD) estimator has become popular (Rousseeuw and Driessen,
1999).

In addition, geochemical data are typically compositional data, in
the form of some proportions such as weight percent, parts per million,
etc., subject to a constant sum (e.g., 100%, 1,000,000 ppm). RPCA only
applies to Euclidean space, indicating that compositional data based
on simplex geometry needs to be transformed by logratio transforma-
tion prior to the RPCA (Aitchison, 1986; Aitchison et al., 2000;
Carranza, 2011; Egozcue et al., 2003; Filzmoser and Hron, 2008;
Reimann et al., 2012). There are three popular logratio transformation
methods for opening the compositional data: additive logratio transfor-
mation (alr) (Aitchison, 1986), centered logratio transformation (clr)
(Aitchison, 1986), and isometric logratio transformation (ilr) (Egozcue
et al., 2003). In this study, the ilrwas used to process the raw geochem-
ical data because of the isometry between the simplex and the
Euclidean spaces, so that the statistical methods were suitable for pro-
cessing ilr-transformed data. For a geochemical composition X in the
D-part simplex SD, the ilr gives (Egozcue et al., 2003):

yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−i

D−iþ 1

r
log

xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏D

j¼iþ1xj
D−1
q i ¼ 1;2;3;…;D−1: ð1Þ

2.2. Trend surface analysis

The TSA, based on the least-sum-of-squares, aims to fit mathemati-
cal surfaces of increasing complexity to a variable distributed on a
map (Oliveira, 1979). It has become a popular technique to separate
spatial patterns into two components: a regional trend and residual
values (Agterberg, 1974; Davis and Sampson, 2002; Unwin, 2009).
The regional trend, regarded as the geochemical background, is comput-
ed by polynomial surfaces of successive powers; while the residual
values, corresponding to geochemical anomalies, are the arithmetic dif-
ferences between the original data and the trend surface, indicating
local fluctuations. Residual maps are associated with local features of
interest.

A trend map delineates the general distribution of an element, and
the local variations are emphasized after the removal of systematic var-
iations (Nichol et al., 1969). The trend surface function gives (Oliveira,
1979):

zi xi; yið Þ ¼ ẑi xi; yið Þ þ εi ð2Þ

where zi(xi, yi), i(xi, yi), and εi are the observed, trend, and residual
values of variable Z at location (xi, yi). εi represents the small-scale
fluctuations plus a random error component. The unknown parameters

Fig. 1. Simplified geological map of the southwestern Fujian province in China (modified from Fujian Geology & Mineral Exploration Bureau, 2011).
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