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Mathematical modeling of geochemical datasets finds frequent applications in Earth Sciences, particularly
in areas of source apportionment and provenance studies. In this work, source apportionment modeling
have been considered based on two commonly used methods, the Least Square Regression (LSR) and
Inverse Modeling (IM), to determine the contributions of (i) solutes from different sources to global river
water, and (ii) various rocks to a glacial till. The purpose of this exercise is to compare the results from
the two mathematical methods, infer their merits and drawbacks and indicate approaches to enhance
their reliability.
The application of the LSR and IM approaches to determine the source contributions to global river water using
the same a-priori end member compositions yielded divergent results; the LSR analysis giving impossibly
negative values of Na contribution from one of the sources (evaporites), in contrast to the IM approach which
yield reliable estimates of source contributions, and a set of a-posteriori source compositions and associated
uncertainties. Interestingly, the use of the a-posteriori composition derived from the IM approach in the LSR
analysis as an input for end-member composition gave source contributions that were consistent with those
derived from IM. Calculations based on the IM show that 46 ± 8% of Na in global river is derived from silicate
weathering, consistent with some of the earlier reported estimates.
In case of the glacial till, the source contributions based on both the approaches were similar, however even
in this case better agreement between the two approaches is obtained when the a-posteriori composition
data of endmembers derived from the IM is used as input in the LSRmodel. These comparisons demonstrate
that the IM is better suited for source apportionment studies among the two models, as it requires only
rough estimates of end member composition, unlike the LSR that needs source composition to be better
constrained. In addition, the IM also provides uncertainties in the source contributions and best estimates
of their composition.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Computational simulation methods have become important tools
over the last few decades in providing quantitative information for
many Earth science problems (Zhao et al., 2009 and the references
therein). For instance, the computational simulation method has been
used to solve not only a wide range of ore forming problems within
the upper crust of the Earth (Gow et al., 2002; Hobbs et al., 2000; Ju
et al., 2011; Lin et al., 2006; Liu et al., 2005, 2008, 2011; Ord et al.,
2002; Schaubs and Zhao, 2002; Schmidt Mumm et al., 2010;
Sorjonen-Ward and Zhang, 2002; Zhang et al., 2003, 2008), but also a

broad range of other types of Earth science problems (Lin et al., 2003,
2008, 2009; Xing and Makinouchi, 2008; Yan et al., 2003; Zhang et al.,
2011; Zhao et al., 2008a, 2010). Since three basic models, i.e. geological,
mathematical and numerical simulation models, are involved in the
computational simulation method, mathematical modeling plays an in-
dispensable role in the computational simulation of Earth science prob-
lems (Zhao, 2009; Zhao et al., 2008b and references therein).

Geochemical approaches, as an import part of the computational
geoscience discipline (Zhao et al., 2009 and references therein), have
found extensive applications in the field of Earth sciences to study and
infer about various geological processes. Chemical, mineralogical and
isotopic compositions of geological samples hold clues to the sources
contributing to them and their mixing proportions and thus, provide
useful insights on the processes and factors responsible for their
mobilization and sequestration. Source-identification and source-
apportionment of elements in different earth system components
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are, however, not straight forward; they rely largely on the mathe-
matical modeling of compositional data. Many mathematical models
are available to apportion source contributions in a mixture. These
include the principal component analysis (PCA), positive matrix
factorization (PMF), least square regression (LSR), forward and in-
verse modeling (IM) (Allegre et al., 1983; Beus and Grigorian,
1977; Bickle et al., 2005; Bryan et al., 1969; Huang and Conte,
2009; Krishnaswami et al., 1999; Makinen and Gustavsson, 1999;
Negrel et al., 1993; Paatero, 1997; Sohn, 2005; Tripathy et al., 2014;
Weltje, 1997; Wu et al., 2005). Among these, the PCA and factor
analysis are often used to quantify source contribution to mixtures
such as river water, sediments and aerosols. The merit of these two
approaches is that knowledge on the number of sources and their
compositions is not a prerequisite for their application to derive in-
formation on the source contribution to a mixture. The applications
of both PCA and factor analysis, however, are limited as at times
these approaches can provide non-positive results for source contri-
butions (Larsen and Baker, 2003; Sofowote et al., 2008). This prob-
lem of the PCA and factor analysis methods is addressed in the PMF
model, which has recently gained attention in aerosol studies (Kim
et al., 2004; Paatero, 1997; Paatero and Tapper, 1993; Sudheer and
Rengarajan, 2012). Among the other mathematical models, least
square regression has been widely used in geochemical problems
(Bryan et al., 1969; Le Maitre, 1979; Wright and Doherty, 1970).
For example, Makinen and Gustavsson (1999) used Chebyshev's
series solution of linear programming to decipher the relative
contribution of amphibolites, granitoids, quartzite and sand to a
till (mixture). Quantification of source contribution to mixtures
(river water) has also been carried out either through the forward
model (Das et al., 2005; Krishnaswami et al., 1999; Moon et al.,
2007; Tripathy et al., 2010) using a suite of mass balance equations
and pre-assigned source composition or through inverse modeling,
based on the composition of mixture and approximate information
on the composition of their possible sources. Allegre et al. (1983)
successfully used the inverse model to derive the contribution
from various reservoirs to basalts to explain their chemical and
isotopic composition. Subsequently, the inverse model has found
extensive application to apportion the chemical and isotopic com-
position of rivers among its sources that include weathering of
major lithologies present in their basins and atmospheric deposition
(Millot et al., 2003; Moon et al., 2007; Negrel et al., 1993; Tripathy and
Singh, 2010;Wu et al., 2005). More recently, the IM has also been exten-
sively used to quantify various oceanic processes (Rahaman and Singh,
2012; Singh et al., 2012).

These models although used widely for source apportionment
and quantification, only a few studies have attempted to inter-
compare the results yielded from various models. Such exercises
are needed to enhance the confidence in the application of these
models and interpret their quantitative results to address source
apportionment and their geochemical significance. Morandi et al.
(1991), based on inter-comparison of results from two different
models (viz. modified version of factor analysis/multiple regression
and regression on absolute principal components), observed that
although the results showed an overall consistency, they also had
some discernible differences. This led the authors to suggest the
need for using more than one model to accurately quantify source
contribution from datasets. More recently, the results of Tripathy
and Singh (2010) on the inter-comparison of source contributions
derived using the forward and inverse models of chemical and Sr
isotopic composition of the Ganga headwaters showed that the
results exhibit statistically significant differences. These observa-
tions highlight the importance of and need for inter-comparison of
results from different mathematical approaches to obtain robust
data on source contribution and inferences on associated geochemi-
cal processes. The present study is an attempt in this direction.
It inter-compares the results on source apportionment obtained

using two commonly employed mathematical techniques: the least
square regression and the inverse model. The study has been con-
ducted on two mixtures: the global river water and a glacial till.
The results have led to better understanding of the inherent merits
and limitations of these models, as discussed in the paper.

2. Methods

2.1. Least square approximation using QR decomposition

The source-apportionment models/programs are based on the mass
balance approach that involves the formulation of suitable equations
for the budget of each element in the mixture and solving the set of
equations to determine the contribution from various sources. In
the LSRmethod, the known parameters are the precisely constrained
elemental abundances (or their ratios) in the mixture (e.g. river
water or sediments) and in their various possible sources (endmembers).
The unknown parameters, which need to be quantified, are the relative
contribution from each source to the mixture.

A set of linear equations totaling the number of unknowns can
provide a unique solution. However, geochemical studies focusing
on source apportionment often have more number of equations
(i.e., number of geochemical parameters) than the number of un-
knowns (i.e., relative contribution from different sources). Eq. (1)
presents such an over-determined linear system, where the mea-
sured chemical data (bi = 1 to m) of the system are related to the
chemical composition of its possible sources/end-members (aij; i =
1 to n; j = 1 to m) and their relative contributions to the mixture
(xi; i = 1 to m). In this case, the number of equations (n + 1) is
more compared to the number of unknowns (m).

a11x1 þ a12x2 þ :::: þ a1mxm ¼ b1
a21x1 þ a22x2 þ :::: þ a2mxm ¼ b2
:::::::::
::::::::
an1x1 þ an2x2 þ :::: þ anmxm ¼ bn
x1 þ x2 þ ::::þ xm ¼ 1

������������

������������
: ð1Þ

These over-determined set of mass balance equations does not have
a unique solution. However, the use of least square regression approach
can provide a ‘best estimate’ solution for the contribution from each end
member to themixture (xi; i = 1,m of Eq. (1)) which can satisfy Eq. (1)
with the least residual.

As a first step to find the best-possible solution using the LSR, Eq. (1)
can be rewritten as an equation of matrices, i.e.,

AX ¼ B ð2Þ

where B and A are matrices containing chemical composition (n ele-
ments) of the mixture and all its possible sources (m), respectively
and X lists the relative contribution from each of the sources. In
order to solve Eq. (2) using the LSR approach, the matrices A and B
need to be known accurately. To achieve this, least square approxi-
mation using the QR factorization of Eq. (2) was adopted in this
study to find the solution of X. The QR decomposition of the matrix
A is its factorization into an orthogonal matrix (Q) and a triangular
matrix (R), i.e.

A ¼ QR ð3Þ

where, Q is an orthogonal matrix, i.e. QTQ= I. I is the identity matrix
and superscript ‘T’ stands for the transpose of the matrix. The QR
factorization transforms a linear over-determined least square
problem into a well-defined triangular system.
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