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a b s t r a c t

This paper revisits the problem of range measurement based localization of a signal source
or a sensor. The major geometric difficulty of the problem comes from the non-convex
structure of optimization tasks associated with range measurements, noting that the set
of source locations corresponding to a certain distance measurement by a fixed point
sensor is non-convex both in two and three dimensions. Differently from various recent
approaches to this localization problem, all starting with a non-convex geometric
minimization problem and attempting to devise methods to compensate the non-
convexity effects, we suggest a geometric strategy to compose a convex minimization
problem first, that is equivalent to the initial non-convex problem, at least in noise-free
measurement cases. Once the convex equivalent problem is formed, a wide variety of
convex minimization algorithms can be applied. The paper also suggests a gradient based
localization algorithm utilizing the introduced convex cost function for localization.
Furthermore, the effects of measurement noises are briefly discussed. The design, analysis,
and discussions are supported by a set of numerical simulations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decade, there has been significant amount
of studies on the problem of range or distance measure-
ment based signal source/sensor localization [1–8]. This
problem is formulated in abstract terms in [5] as follows:

Problem 1.1. Given known 2 or 3-dimensional sensory
station positions x1; . . . ; xN (N > 2 and N > 3 in 2 and 3
dimensions respectively) and a signal source/target at
unknown position y�, estimate the value of y�, from the
measured distances di ¼ ky� � xik.

Problem 1.1 is defined in the form of a cooperative target/
source localization task; nevertheless, it can be considered in
the form of a sensor network node self-localization problem
as well, where the N stations represent N anchors, and there
is a ðN þ 1Þst sensor node at y� estimating its own position.

The major geometric difficulty of Problem 1.1 comes
from the non-convex structure of optimization tasks associ-
ated with range measurements: The set of source locations
corresponding to a certain distance measurement di by a
sensor located at point xi is non-convex both in two and
three dimensions, in the form of a circle and a spherical
shell, respectively. The generic attempt is then fusing all
the distance measurements d1; . . . ; dN from the sensing
points x1; . . . ; xN , respectively, and finding the intersection
of the non-convex source location sets Sðxi; diÞ correspond-
ing to the ðxi; diÞ pairs. However, the non-convexity of these
location sets limits the application of the algorithms
devised based on intersection of the mentioned non-convex
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source location sets Sðxi; diÞ and the corresponding non-con-
vex cost functions.

This paper revisits Problem 1.1 following a different
approach and suggests a geometric strategy to compose a
convex geometric problem first, that is equivalent to the
initially non-convex problem, at least in noise-free
measurement cases. Once the convex equivalent problem
is formed, a wide variety of convex minimization algorithms
can be applied. The paper also suggests a gradient based
localization algorithm based on the introduced convex cost
function for localization. Furthermore, the effects of mea-
surement noises are briefly discussed. The design, analysis,
and discussions are supported by a set of numerical
simulations.

The details of distance measurement mechanisms used
for the above problem is out of scope of this paper. Such
details can be found, e.g., in [7,8]. Nevertheless, similar to
[5], for better visualization of the implementation of the
localization task, we give here one mechanism example,
received signal strength (RSS) approach: For a source emit-
ting a signal with source signal strength A in a medium
with power loss coefficient g, the RSS at a distance d from
the signal source is given by

s ¼ A=dg
: ð1:1Þ

Using (1.1), d can be calculated given values of A; s, and g.
The rest of the paper is organized as follows: Section 2

introduces the proposed problem convexification strategy
based on the notion of radical axis. Section 3.1 proposes a
gradient based localization algorithm minimizing the con-
vex cost function introduced in Section 2. Convergence
analysis for the noise-free measurement cases is provided
in Section 3.2. Simulation studies, including those testing
the effects of measurement noises, are presented in Section
4. Closing remarks are given in Section 5.

2. Convexification of the localization problem

2.1. Non-convex cost functions

As stated in Section 1, the approaches to Problem 1.1 in
the literature start with a non-convex geometric minimiza-
tion problem definition and attempt to devise methods to
compensate the non-convexity effects. A typical natural
selection of cost function to minimize [5] is

J1ðyÞ ¼
1
2

XN

i¼1

ki kxi � yk2 � d2
i

� �2
; ð2:1Þ

where ki (i ¼ 1; . . . ;N) are positive weighting terms. A gra-
dient localization algorithm based on minimization of the
non-convex cost function (2.1) has been proposed in [5].
Although this algorithm has proven stability and conver-
gence properties, for these guaranteed properties to hold
y� in Problem 1.1 is required to lie in a certain convex
bounded region defined by the set fx1; . . . ; xNg. Next we
introduce a new cost function to overcome the aforemen-
tioned limitation.

2.2. A convex cost function based on radical axes

In two dimensions, if the distance measurements di in
Problem 1.1 are noise-free, the global minimizer of (2.1)
is located at y�, where J1ðy�Þ ¼ 0. Geometrically, y� is the
intersection of the circles Cðxi; diÞ with center xi and radius
di. We re-formulate this later fact to form a convex cost
function to replace the non-convex (2.1), using the notion
of radical axis:

Theorem 2.1 [9, Fact 45]. Given two non-concentric circles
Cðc1; r1Þ;Cðc2; r2Þ, there is a unique line consisting of points p
holding equal powers with regard to these circles, i.e.,
satisfying

p� c1k k2 � r2
1 ¼ p� c2k k2 � r2

2:

This line is perpendicular to the line connecting c1 and c2, and if
the two circles intersect, passes through the intersection points.

The unique line mentioned in Theorem 2.1 is called the
radical axis of Cðc1; r1Þ and Cðc2; r2Þ [9].

Lemma 2.1. In 2 dimensions, if the distance measurements di

in Problem 1.1 are noise-free, the intersection set of the
radical axes of any N � 1 distinct circle pairs Cðxi; diÞ;Cðxj; djÞ
(i – j) is fy�g.

Proof. The result straightforwardly follows from Problem
1.1 definition and the last statement of Theorem 2.1. h

In order to utilize Lemma 2.1, we first derive the math-
ematical representation of the radical axis lij of a circle pair
Cðxi; diÞ;Cðxj; djÞ (i – j) given the values of xi; xj; di; dj. Such a
radical axis line is illustrated in Fig. 1. lij perpendicularly
intersects xixj at yij. Hence any point y on it satisfies

ðy� yijÞ
T eij ¼ 0; ð2:2Þ

where

eij ¼ xj � xi:

It can be observed from Fig. 1 that

yij ¼ xi þ ai
eij

keijk
; ð2:3Þ

as well as d2
i � a2

i ¼ d2
j � a2

j ¼ d2
j � ðkeijk � aiÞ2, from which

ai can be calculated as

ai ¼
keijk2 þ d2

i � d2
j

2keijk
: ð2:4Þ

The Eqs. 2.2, 2.3 and 2.4 form the explicit mathematical
representation we were looking for.

Next, we focus on utilization of Lemma 2.1 to compose
a convex alternative for (2.1). Leaving the optimal selection
of the N � 1 distinct circle (or corresponding sensor node)
pairs to a future study, we consider a sequential pair selec-
tion for the rest of this paper: For each i 2 f1; . . . ;N � 1g,
let pair i denote the circle pair Cðxi; diÞ;Cðxiþ1; diþ1Þ; li

denote the corresponding radical axis, yi denote the inter-
section of li and xixiþ1; and accordingly let us use the
following special case of (2.3) and (2.4):
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