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lower Bound (PCRB) as the performance-based optimization criteria because of its built-
in capability to produce online estimation performance predictions, a “must” for high
maneuverable targets or when slow-response sensors are used. In this paper, we analyze,
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and compare, three optimization algorithms: genetic algorithm (GA), particle swarm opti-
mization (PSO), and a new discrete-variant of the cuckoo search algorithm (CS). Finally, we
propose local-search versions of the previous optimization algorithms that provide a sig-
nificant reduction of the computation time.
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Appendix B. Computing PCRB via Sequential Monte Carlo
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1. Introduction

In this work, we investigate the centralized selection of
(ns) sensors in target-tracking applications over huge net-
works where a large number (N) of randomly placed sen-
sors are available for taking measurements.

Obviously, the tracking accuracy improves with the
increasing number of measurements. Therefore, in terms
of the tracking performance, it is desirable to use as many
measurements as possible. However, the nodes in the
wireless sensor networks (WSNs) have limitations in
energy consumption, computation power, and sensing
ranges, which means that it is not optimal for all available
sensors to take measurements. As a result, we have two
conflicting goals: (1) to collect information of high quality
(utility), and (2) to conserve energy (cost).

Several suboptimal heuristics have been proposed to
approximately solve the sensor-selection problem. These
include genetic algorithms [ 1], particle swarm optimization
[2,3], convex optimization [4], or stochastic strategies [5].

Regarding the objective function (or, in other words, the
utility function), the sensor selection can be based on
entropy- or performance-related criteria [6].

With respect to the entropy-based utility functions, an
uncertainty-bounded model was proposed in [7], where
sensor information utility is related to the uncertainty area
of target concerned with the sensors. This approach is good
in precision but intensive in calculation. An entropy-based
information utility measurement was also defined in [8].
This approach, implemented with Bayesian Filters, is based
on the estimation of an expected target belief state.
Although it achieves good tracking accuracy, it requires
precise estimates for the probability density functions
needed to obtain the information metric.

Regarding the performance-based utility functions, the
Cramér-Rao lower Bound (CRB) provides the limit on the
mean square error (MSE) for any unbiased estimator of
the target state. This provides a powerful tool that, within
the context of target tracking, has been used to assess the
performance of estimators of track parameters for deter-
ministic target motion [9]. In the case of dynamic and
uncertain target motion, the Posterior Cramér-Rao lower
Bound (PCRB) provides a measure of the achievable perfor-
mance for recursive Bayesian estimators of the uncertain
target state, with the added advantage of being indepen-
dent of the estimation mechanism. In addition, it provides
online estimation performance predictions, which are very
useful both for tracking highly maneuverable systems
and to activate slow-response sensors, as some used in
environmental monitoring [10]. In [11,12], the authors
demonstrated the utility of this criterion over informa-
tion-based or entropy-based methods.

Optimization algorithms are proposed here as a solu-
tion to the sensor-selection problem. Many articles in the
literature have used these algorithms in the field of WSN
in many different ways [13,14]. For instance, the authors
of [15] pose the optimization of the sensors placement to

achieve the optimal communication coverage, or as in
[16] where its authors propose an energy-efficient routing
based on optimization algorithms.

In this paper we focus on the application of optimiza-
tion algorithms for the selection of sensors using the PCRB
as a quality measure. The main part of this paper is devoted
to the performance comparison of well-known optimiza-
tion algorithms, such as the particle swarm optimization
(PSO) [17] and the genetic algorithm (GA) [18]. We have
also included the cuckoo search (CS) algorithm [19] in
our study because it provides more robust and precise
results than the PSO and the GA [20]. It is important to
mention that the conventional CS algorithm cannot be
directly applied to discrete search-space problems (as is
the selection of n; out of N sensors). For this reason, in this
paper we present a modification (the Discrete Cuckoo
Search, DCS) that, obviously, could be also applied to other
discrete search-space problems.

Another contribution is related to computation of the
PCRB and, therefore, of the target’s vector state. There are
many sensors that provide measurements that depend
only on the target position (energy, time of arrival, gas con-
centration), and not (at least, directly) on its speed or
acceleration. For this reason, and taking into account that
the PCRB is not constrained by the estimation methodol-
ogy, we propose to partition the state vector and to use
the Rao-Blackwellized Particle Filter (RBPF) [21] in its
estimation.

The rest of this paper is organized as follows. The sys-
tem model and the applied tracking algorithm are
explained in Section 2. In Section 3, we define the sen-
sor-selection problem and its solution by means of optimi-
zation methods. Section 4 presents the discrete
formulation of CS and its application to our problem. The
use of a local search instead of a global search is proposed
in Section 5. Simulation results are presented in Section 6.
Finally, concluding remarks are presented in Section 7.

2. System model
2.1. Dynamic and observation model

The aim of target tracking is to estimate the state trajec-
tories of a movable element. Although a target is almost
never really a point in space and the information about
its orientation is valuable for tracking, a target is usually
treated as a point object without a shape in tracking, espe-
cially in target dynamic models. Under the usual Markov
assumption, the standard discrete-time dynamic and
observation models are:

Xy ~ P(Xk[Xx-1) (1)
Zy ~ P(Z|Xx) (2)
where X, represents the state of the dynamic system at

time k, z, is the observation vector, and p(:|]-) is a
conditional probability density function.
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