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ARTICLE INFO ABSTRACT

Available online 17 April 2012 In several recent studies, 2-dimensional applications of local singularity analysis including regional studies
based on stream sediment data show local minima that are spatially correlated with known mineral deposits.
These minimal singularities, which may provide targets for further mineral exploration, generally are
smoothed out when traditional geostatistical contouring methods are used. Multifractal analysis based on
the assumption of self-similarity predicts strong local continuity of element concentration values that cannot
be readily determined by variogram or correlogram analysis. This paper is concerned with multifractal and
geostatistical modeling of the largest and smallest geochemical element concentration values in rocks and
orebodies. These extreme values correspond to local singularities with near-zero fractal dimensions that
occur close to the minimum and maximum singularity in the multifractal spectrum. The latter cannot be de-
termined by means of the method of moments because of small-sample size problems arising when the larg-
est and smallest concentration values are raised to very large powers q. It is shown by means of a computer
simulation experiment and application to copper determinations from along the 7-km deep KTB borehole in
southeastern Germany, that local singularity analysis can be used to determine all singularities including the
extreme values. The singularities estimated by this method are linearly related to logarithmically trans-
formed element concentration values. This simple relation also can used to measure the small-scale nugget
effect, which may be related to measurement error and microscopic randomness associated with ore grain
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1. Introduction

During the past 40 years, the fractal geometry of many natural fea-
tures in Nature has become widely recognized (see e.g. Barnsley,
1988; Carranza, 2008; Mandelbrot, 1983; Raines, 2008; Turcotte,
1997). Fractals in geology either represent the end products of nu-
merous, more or less independent processes (e.g. coastlines and to-
pography), or they result from nonlinear processes, many of which
took place long ago within the Earth's crust. Although a great variety
of fractals can be generated by relatively simple algorithms, theory
needed to explain fractals of the second kind generally is not so sim-
ple, because previously neglected nonlinear terms have to be inserted
into existing linear, deterministic equations. Several types of patterns
are best modeled as multifractals, which are spatially intertwined
fractals (Stanley and Meakin, 1988). Most progress in multifractal
theory development has been made in geophysics to study nonlinear
processes including cloud formation and rainfall (Schertzer and
Lovejoy, 1991). Lovejoy and Schertzer (2007), Lovejoy et al. (2008),
Cheng (2008), Ford and Blenkinsop (2009), Agterberg (2012) and
Cheng (2012) show that scaling and multifractal fields also exist
within solid Earth.
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In this paper special attention will be paid to sampling problems
which arise because chemical concentration values for small rock sam-
ples must be extrapolated over much larger rock masses in order to de-
scribe the multifractal fields. Such extrapolations remain subject to
uncertainty. Much of classical theory of mathematical statistics is
based of random variables for measurements that are stochastically in-
dependent. In general, chemical determinations for rock samples are
subject to spatial dependence and use can be made of geostatistical the-
ory originally developed by Matheron (1962), whose geometrical ap-
proach is also explained in various geostatistical textbooks including
David, 1977, Journel and Huijbregts (1978) and Cressie (2001).
Matheron (1962) initially based his geostatistical theory on the princi-
ple of “similitude” underlying the model of de Wijs (1951). Later,
Mandelbrot (1983) recognized that it can be said that de Wijs (1951)
developed the first multifractal also known as the p-model (Schertzer
et al., 1997) or binomial/p model (Lovejoy and Schertzer, 2007). Krige
(1978) demonstrated that the model of de Wijs could be applied to
hundreds of thousands of gold assays from Witwatersrand goldfields,
at scales ranging from local to regional (see also Mandelbrot, 1995).

The model of de Wijs is based on the simple assumption that when a
block of rock with an element concentration value X is divided into two
halves, the element concentration values of the two halves are (1 +d)-X
and (1 —d)-X regardless of the size of the block. The coefficient d is the
index of dispersion. The ratio (14 d)/(1 —d) can be written as 1> 1. The
process of starting with one block that is divided into halves, dividing


http://dx.doi.org/10.1016/j.gexplo.2012.04.001
mailto:Frits.Agterberg@NRCan-RNCan.gc.ca
mailto:agterber@nrcan.gc.ca
http://dx.doi.org/10.1016/j.gexplo.2012.04.001
http://www.sciencedirect.com/science/journal/03756742

114 F.P. Agterberg / Journal of Geochemical Exploration 122 (2012) 113-122

the halves into quarters and continuing the process of dividing the
smaller blocks into halves represents a multiplicative cascade. This
model resulting in self-similarity or scale independence can be readily
generalized in two ways: (1) in practical applications there generally
is a lower limit to the size of blocks with the same index of dispersion
as larger blocks. Below this limit, d usually decreases rapidly to zero;
this limitation is accommodated in the 3-parameter model of de Wijs
(Agterberg, 2007a) that has an effective maximum number of subdivi-
sions beyond which the model of constant index of dispersion does
not apply; (2) the idea of cutting any block into halves with constant
value of d is not realistic on a local scale (e.g. d does not stay exactly
the same when halves become quarters). However, this problem is
eliminated in the random cut model for which the coefficient d is
replaced by a random variable D with variance independent of block
size (Agterberg, 2007a). The end products of constant dispersion and
random cut cascades are similar.

To illustrate application of his model, De Wijs (1951) used a series
of 118 zinc concentration values from channel samples taken at a reg-
ular 2-m interval along a horizontal drift in the Pulacayo zinc deposit,
Bolivia (Fig. 2, see later). This series was used extensively for later
study in geostatistics and multifractal modeling, not only by
Matheron (1962), but by several other authors including Agterberg
(1967,1994), Cheng and Agterberg (1996), Chen et al. (2007),
Lovejoy and Schertzer (2007) and Agterberg (2012). In this paper,
multifractal modeling will be applied to an artificial series in a com-
puter simulation experiment and to a series of 1796 copper concen-
tration values from along a section of the 7-km deep KTB borehole
drilled in the Bohemian Massif in southeast Germany.

The model of de Wijs results in a logbinomial frequency distribu-
tion of element concentration values (X) with logarithmic variance:

o? (InX) = n-(Inm)* /4. (1)

According to the De Moivre-Laplace theorem (Bickel and Dockum,
2001, p. 470), the frequency distribution of In X converges to normal
form when n increases. Frequency density values in the upper tail of
the logbinomial are less than those of the lognormal. The logbinomial
would become lognormal when n representing the number of subdivi-
sions of blocks is increased indefinitely. Paradoxically, its variance then
also would become infinitely large. In practical applications, it is often
seen that the upper tail of a frequency density function of element con-
centration values is not thinner but thicker and extending further than a
lognormal tail. Several cascade models (e.g. Veneziano and Langousis,
2005) result in frequency distributions that resemble the lognormal
but have Pareto tails. Already in the 1980s, Schertzer and Lovejoy
(1985) had pointed out that the binomial/p model can be regarded as
a “micro-canonical” version of their ac-model in which the strict condi-
tion of local preservation of mass is replaced by a more general condition
of preservation of mass within wider neighborhoods (preservation of
ensemble averages). Cascades of this type can result in lognormals
with Pareto tails. In the 3-parameter Lovejoy-Schertzer a-model, « is
not the singularity but represents the Lévy index that, together with
“codimension” C; and “deviation from conservation” H, characterizes
the multifractal field. Examples of applicability of these approaches to
geological processes that took place in the Earth's crust have been
given by Lovejoy and Schertzer (2007).

Another possible explanation of thicker, longer tails of frequency
distributions of geochemical data is provided by the following variant
of the model of de Wijs in which the coefficient of dispersion (d) in-
creases with element concentration value X during the multiplicative
cascade process, or

d =dyexp(—pX) 2)

where d, represents initial dispersion index, at the beginning of the
multiplicative cascade, and p is a constant. This accelerated dispersion

model produces thicker and longer than lognormal frequency distri-
bution tails (Agterberg, 2007b). Additionally, it yields more very
small values thus producing a secondary peak near the origin of the
frequency density function. Cheng (2008, 2012) has proposed that
very large element concentration values, which correspond to rela-
tively low singularities, are spatially correlated to mappable proper-
ties of rocks. It is possible that the latter are related to relatively
large value of the constant (p) in Eq. (2) that significantly affects
the largest (and smallest) values only.

Matheron (1962) generalized the original model of de Wijs by in-
troducing the concept of “absolute dispersion” here written as A= (In
1)?/In 16. This approach is equivalent to what is now better known as
scale invariance. It leads to the more general equation

o? (InX) = A- In{V/v} 3)

where 02 (In X) represents logarithmic variance of element concen-
tration values X in smaller blocks with volume v contained within a
larger block of rock with volume V.

Fig. 1 is a classical example of the relationship between logarithmic
variance and block size for Witwatersrand gold values as derived by
Krige (1966). The gold occurs in relatively thin sedimentary layers
called “reefs”. Average gold concentration value is multiplied by length
of sample cut across reef and unit of gold assay values is expressed as
inch-pennyweight in Fig. 1 (1 inch-pennyweight =3.95 cm-g). Three
straight-line relationships for smaller blocks within larger blocks are in-
dicated. However, there are two departures from the simple model of
Eq. (3). The first of these departures is that a small constant term
(420 inch-pennyweights) was added to all gold values. This reflects
the fact that, in general, the 3-parameter lognormal model provides a
better fit than the 2-parameter lognormal (Krige, 1966). As discussed
in more detail in Agterberg (1974, pp. 216-217), this departure corre-
sponds to a narrow, secondary, peak near the origin of the normal
Gaussian frequency density curve for logarithmically transformed gold
concentration values (Agterberg, 1974, Fig. 32). The accelerated disper-
sion model of Eq. (2) would explain this type of secondary peak. The
second departure consists of constant terms that are contained in the
observed logarithmic variances plotted in Fig. 1. These additive terms
are related to differences in shapes of the blocks with volumes v and V
as will be explained in more detail in the next section.

Geostatistical studies commonly are based on a semivariogram
fitted to element concentration values from larger neighborhoods. Gen-
erally, these models show a “nugget effect” at the origin, a “range” of
significant spatial autocorrelation with a “sill” that corresponds to re-
gional mean concentration value. It is well known that the “nugget ef-
fect” generally is much larger than chemical determination errors and
microscopic randomness associated with ore grain boundaries. This sec-
ond source of randomness arises because, at the microscopic level,
chemical elements generally are confined to crystals with boundaries
that introduce randomness at very small scales. In general, the preced-
ing two sources of local randomness have effects that rapidly decline
with distance. Local clustering of ore crystals at scales less than the sam-
pling interval used for sampling rocks or orebodies is probably wide-
spread. Multifractal semivariograms can account for local continuity
due to clustering (Agterberg, 2012). Similar local continuity effects
exist in other types of data; e.g., data resulting from stream sediment
geochemical surveys.

Most geological maps display bedrock as a mosaic of distinct rock
units of different composition and age. Small rock samples are taken
and subjected to chemical analysis. Normally, the resulting chemical el-
ement concentration values are used to help with rock identification
and to describe the physico-chemical processes that led to the patterns
of rock units on the geological map and its three-dimensional exten-
sions into depth. Although orebodies and hydrocarbon deposits gener-
ally occupy relatively small volumes within the Earth's crust, they are
targets of intense exploration including chemical determinations both
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