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This paper presents a methodology based on geostatistical theory for quantifying the risks associated with
heavy-metal contamination in the harbor area of Santana, Amapá State, Northern Brazil. In this area there
were activities related to the commercialization of manganese ore from Serra do Navio. Manganese and
arsenic concentrations at unsampled sites were estimated by postprocessing results from stochastic
annealing simulations; the simulations were used to test different criteria for optimization, including
average, median, and quantiles. For classifying areas as contaminated or uncontaminated, estimated
quantiles based on functions of asymmetric loss showed better results than did estimates based on
symmetric loss, such as the average or the median. The use of specific loss functions in the decision-making
process can reduce the costs of remediation and health maintenance. The highest global health costs were
observed for manganese.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Environmental contamination at industrial sites is a particular
problem that requires a remediation approach plus monitoring of the
remediation process itself. In environmental remediation, however, the
inevitable presence of uncertaintymakes decisionmaking time-consum-
ing and difficult. The uncertainty is caused by unknown concentrations of
toxic elements at unsampled locations. The only way to reduce the
uncertainty would be to collect additional samples but, because of the
finite nature of sampling, even this would not altogether eliminate the
uncertainty (Istok and Rautman, 1996). The error could, however, be
minimized by using loss functions from an uncertainly model so as to
minimize the difference between real and estimated values.

Quantifying the uncertainty of a random variable Z is done using a
statistical distribution that describes the frequency of unsampled
locations, u. This can be represented by the conditional cumulative
distribution function (ccdf), defined as

F u; z j nð Þð Þ = Prob Z uð Þ V Z nð Þf g ð1Þ
The function F(u;Z|(n)) depends on the number of sampled points, n,

the space configuration, the data values, and the specific space
phenomenon in the study. The uncertainty is incorporated, therefore,
starting fromamodel of F(u;Z|(n)) for the variables in the study, and the
error is minimized by the loss functions used. The function F(u;Z|(n))
can be obtained from a stochastic simulation that corresponds to the

variables in the study. Each simulation provides a concentration map of
the contamination in the study area, consistent with known concentra-
tions, the sample histogram, and the space continuity pattern exhibited
by the data. In this case, each simulation is defined bya joint distribution
at all grid locations taken at the same time. This guarantees that the
space uncertainty is modeled starting frommultiple fulfillments of joint
distributions of values in the space.

Modeling the uncertainty of z(u) is done with the function F(u;Z|
(n)) in the sense that probability intervals can be derived, such as,

Prob Z uð Þa a; bð � n nð Þf g = F u; b n nð Þð Þ− F u; a j nð Þð Þ ð2Þ
or in the sense that the probability of Z(u) reaches a certain cutoff
value. This is particularly important in many environmental applica-
tions and is given by

Prob Z uð Þ N b j nð Þf g = 1− F u; b j nð Þð Þ ð3Þ
In several decision-making processes, maps generated by the

probability (3) are enough to outline areas in which remediation
measures must be taken. Although the probabilistic evaluation of the
uncertainty, using ccdf, represents a criterion for making a decision, the
measures of local uncertainty, in general, should be supplemented by an
estimate z⁎(u) of the unknownvalue. That iswhy the decisionprocess is
rarely based only on probability.

The estimate z⁎(u) of an unknown value z(u) generally has a
nonzero error given by e(u)=z⁎(u)−z(u). In estimates of a toxic
concentration, underestimating a concentration may threaten health
or result in complaints; overestimating a concentration may incur
unnecessary costs and squander cleanup resources. This means that
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an erroneous classification of toxic concentrations will always cause
losses; therefore, an error function represents a loss.

To evaluate the impact or loss associated with an error we use a
function L(e(u)), called a loss function, that provides a criterion for
minimizing errors in the classification. The classification is considered
robust if the expected loss is at its minimum. Although the argument
[z⁎(u)−z(u)] of the loss function is unknown, the uncertainty of z(u)
can be modeled by the ccdf, F(u;z|(n)), which is available.

The following uncertainty model can be used to determine the
expected loss:

uL z⁎ uð Þj nð Þ
� �

= E L z⁎ uð Þ− Z uð Þ
h i

j nð Þ
n o

=
Z ∞

−∞
L z⁎ uð Þ− z
� �

dF u; z j nð Þð Þ ð4Þ

In practice, the following discrete sum is used:

uL z⁎ uð Þ j nð Þ
� �

≈
XK + 1

k=1

L z⁎ uð Þ− z̄k
� �½F u; zk j nð Þð Þ− F u; zk−1 j nð Þð Þ�ð5Þ

where zk, k=1,..., K, are K cutoff values that discretize the variation
values of z; by convention, F(u;z0|(n)=0 and F(u;zk+1|(n)=1. In
addition, z ̄k is the class mean (zk−1, zk], which depends on the
interpolation model inside the classes; for example, in the simple case
of the linear model, z̄k=(zk−1+zk)/2.

The optimum estimate for the loss function L is the value of z⁎(u)
that minimizes the expected loss; that is, zL⁎(u) is the value of z⁎(u)
thatminimizes L(z⁎(u)−z(u)). To calculate the optimum estimate, first
the uncertainty of the unknown value, z(u), is modeled by ccdf. Then
we deduce an estimate for z⁎L according to a specific criterion for
optimization. Thus, for a particular uncertainty model, different
estimates are obtained depending on the loss function chosen. The
quality of an estimate depends on its use; there is no one optimum
estimate that is best for all purposes (Journel, 1987; Srivastava, 1987).

Optimum estimates for the criterion of the quadratic average
deviation, or for least squares, are related to a function of quadratic
symmetrical loss. In contrast, optimum estimates for the absolute
average criterion are related to functions of symmetrical and
asymmetric loss. All these criteria were used in the present work to
extend estimates and to identify and classify areas that show
indications of contamination from manganese and arsenic. Thus, it
was possible to evaluate the optimum estimate and, consequently, to
classify more adequately the variables in the study. Functions using
specific loss allowed us to determine health costs and to monitor
remediation in the studied area.

2. General aspects of the study area

The study area is located in the district of Santana, Amapá State, in
the extreme north of Brazil, approximately between 50° and 55° Wand
0° to 5° N (Fig. 1). Santana City has a population of 80,439, the second
largest in the state (IBGE, 2000). In1953, following thediscoveryof high-
quality manganese in Serra do Navio, about 200 km from the state's
capital Macapá, the Ore Trade Industry Inc (ICOMI) was established to
exploit and commercialize the ore. To carry out the mining, ICOMI
constructed a residential communitynear themanganesemines in Serra
do Navio; the result was Santana, a community having a complete
infrastructure including sanitation, a recreation facility, schools, super-
market, hospital, and housing for the company's employees and their
families, in addition to the industrial installation.

The industrial Santana area covers approximately 129 ha and was
planned to be strictly for industrial purposes. The area was basically
used to stock manganese and iron ores, products (pellets/sinter and
alloys), and raw materials (fuel, coke, etc.) that arrived and departed
through the ICOMI port and rail terminal (PCA/Environmental Control
Plan, 2001). Manganese and chromite orewere transported by railway
from the Serra do Navio mines to the ICOMI industrial area in the Port
of Santana, a distance of approximately 200 km.

Geologically, the studied area, which covers the perimeter of
ICOMI, is over sediments of the Barreiras Formation consisting of silty
organic clays, clay silts, and hard clay with occasional intercalations of
fine and coarse sand. The hydrology is important to the physical
landscape and the local economy. Santana Port fronts the Northern

Fig. 1. (a) Amapá State in Northern Brazil; (b) and (c) Municipal districts in Amapá State showing Serra do Navio, where manganese was mined, and Santana, where manganese
processing, commercialization, and overseas transport were performed.

Table 1
Maximum concentrations allowed (in mg/L) in drinking water (CONAMA), the
minimum and maximum measured values, and the % of measured values above the
allowed maximum.

Element CONAMA Min Max % Pollution

Iron (Fe) 0.300 0.000 85.41 36.6
Manganese (Mn) 0.100 0.002 51.44 27.0
Arsenic (As) 0.050 0.000 22.92 9.80
Aluminum (Al) 0.100 0.008 21.78 75.5
Selenium(Se)2 0.010 0.000 0.041 46.3
Lead (Pb)2 0.030 0.008 0.04 4.90
Copper (Cu)2 0.020 0.000 0.03 4.90
Cadmium (Cd)1 0.001 0.000 0.003 7.30

1 (×0.001 mg/L).
2 (×0.01 mg/L).
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