
Optimal chunking and partial caching in information-centric networks

Liang Wang ⇑, Suzan Bayhan, Jussi Kangasharju
Department of Computer Science, University of Helsinki, Finland

a r t i c l e i n f o

Article history:
Received 6 July 2014
Received in revised form 17 December 2014
Accepted 20 December 2014
Available online 30 December 2014

Keywords:
Information-centric network
Chunking
In-network caching
Performance analysis
Performance modeling

a b s t r a c t

Caching is widely used to reduce network traffic and improve user experience. Traditionally caches store
complete objects, but video files and the recent emergence of information-centric networking have high-
lighted a need for understanding how partial caching could be beneficial. In partial caching, objects are
divided into chunks which are cached either independently or by exploiting common properties of
chunks of the same file. In this paper, we identify why partial caching is beneficial, and propose a way
to quantify the benefit. We develop an optimal n-Chunking algorithm with complexity Oðns2Þ for an
s-byte file, and compare it with �-optimal homogeneous chunking, where � is bounded by Oðn�2Þ. Our
analytical results and comparison lead to the surprising conclusion that neither sophisticated partial
caching algorithm nor high complexity optimal chunking are needed in information-centric networks.
Instead, simple utility-based in-network caching algorithm and low complexity homogeneous chunking
are sufficient to achieve the most benefits of partial caching.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Network caching reduces network traffic by exploiting redun-
dancy in traffic [1] and popularity of content [2]. Different caching
strategies have been proposed for different cases, such as web and
media caching. An important, yet not widely studied question in
caching relates to whether objects should be cached in their
entirety (integral caching) or if only parts of objects should be
cached (partial caching). Traditionally, web caching has favored
the integral approach, whereas media caching has also considered
partial caching.

Information-centric networking (ICN) [3–6] uses caching exten-
sively for content delivery and some ICN approaches by default
divide objects into chunks, leading effectively to partial caching.
This is suitable for large video files, since they are often only par-
tially accessed [7]. Integral caching may waste cache space by stor-
ing parts of objects that are less popular than the most popular
parts of the same objects. It appears intuitive to develop efficient
partial caching algorithms for optimal handling of such differing
popularities inside objects.

However, the reality is somewhat more nuanced, as we show in
this paper. Our focus is on understanding how different ways of
dividing the object (chunking) reflect on performance of caching
and how to optimally chunk an object. We show that, while partial
caching is useful for partially accessed objects, similar results can be

achieved via chunking the object into enough many chunks and
using simple caching algorithms. In other words, there is only a very
small range of system parameters where sophisticated partial cach-
ing algorithms are needed, even with erratic object access patterns.

Even though there is a large body of literature on ICN, chunking
analysis has long been overlooked. In addition, many ICN proposals
[3–6] adopted various chunking schemes in their architecture
design, but how fast the benefit from chunking vanishes is still
poorly understood. Consequently, the optimal chunk size also
remains as an open research question. To the best of our knowl-
edge, there has not been any thorough theoretical analysis or
empirical evaluation of the effects of different chunking schemes
on caching. Especially in ICN, as content items are digitally signed
and managed at chunk level, finding a good tradeoff point between
caching efficiency and maintenance overhead is vital. These
unsolved questions have posed a significant challenge to system
architects, ISPs and IETF (Internet Engineering Task Force) when
they define the specifications of the content management and
transportation for the future Internet. We hope our work can fill
this gap by providing a deep understanding on the optimal chunk-
ing and partial caching on ICN networks.

Specifically, our contributions are as follows:

� We analyze the effects of chunking and develop the concept of
popularity distribution distance to measure the effectiveness of a
chunking scheme. We derive bounds on performance of partial
caching and compare the optimal chunking with naive homoge-
neous chunking analytically.

http://dx.doi.org/10.1016/j.comcom.2014.12.009
0140-3664/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: liang.wang@cs.helsinki.fi (L. Wang).

Computer Communications 61 (2015) 48–57

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2014.12.009&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2014.12.009
mailto:liang.wang@cs.helsinki.fi
http://dx.doi.org/10.1016/j.comcom.2014.12.009
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

� We demonstrate the performance of partial caching algorithms
with different chunking schemes and the experiments confirm
our analysis that after a moderate number of chunks, partial
caching yields no further benefits.
� Both analytical and experimental results show neither sophisti-

cated partial caching algorithm nor optimal chunking are
needed in practice. Instead, a simple utility-based caching algo-
rithm with naive homogeneous chunking is sufficient to achieve
most benefits of partial caching.

The rest of the paper is organized as follows. Section 2 describes
our system model and Section 3 presents formal analysis on
chunking schemes. Section 4 formalizes optimal caching algo-
rithms and evaluates their performance under different chunking
schemes. Section 5 introduces a utility-based heuristic and com-
pares its performance with the optimal caching algorithms. Sec-
tion 6 reviews related work and Section 7 concludes the paper.

2. System model

Consider a network of M routers organized in a general topol-
ogy. Let Ri denote the router i with cache storage capacity of Ci

bytes. This network serves the users that generate requests for files
in the set I with jI j ¼ N. We denote a file by f i and its size by si. All
files are stored permanently at the Content Provider (CP) which is
represented as the ðM þ 1Þth router (RMþ1). Users interact only
with the L edge routers – routers connect to the users – also
referred to as leaf nodes.1 A file f i is divided into ni smaller units
referred to as chunks, and jth chunk is denoted as f i;j. Denote the
probability of request for a file by this file’s popularity pi, and simi-
larly denote the popularity of chunk f i;j by pi;j. We refer to the pop-
ularity vector in both cases by p ¼ ½pi� (or p ¼ ½pi;j�). If an edge router
has the requested item in its cache, we call this a hit and this item is
transmitted to the user directly from this router. In case of a miss –
the case where the router does not have the item, the request is
retrieved from the closest router storing this item. If the item is
not stored in the network, it is retrieved from CP.

3. Analysis on chunking

Cutting a file into smaller chunks improves caching performance
since more fine-grained caching decisions can be made, especially
when different parts of the file have different popularities. How-
ever, quantifying the effects of chunking and the resulting benefits
in partial caching have largely been unexplored. We now present
the relationship between chunking and performance, then quantify
the benefits of partial caching, and outline the steps of an optimal
chunking algorithm.

Although the common understanding is that smaller chunk size
can capture user behavior (e.g., frequently-accessed parts of a
video) more accurately, the smallest indivisible unit in practice is
determined by many other factors, e.g., application configuration,
hardware limit, packet size, etc. For the simplicity of presentation,
we refer one byte as the smallest unit for the discrete case, and a
continuous real function for the continuous case to derive analyt-
ical results in closed form. Note that our choice of the word byte
is only for distinguishing the smallest unit from chunk, rather than
indicating byte-granularity chunking in realistic settings.

3.1. Chunking effect: origin of partial caching benefit

Assume that the smallest indivisible unit of a file is one byte and
the smallest unit requested by the user is a chunk. Fig. 1 gives an

example where a six-byte file is divided into two chunks A and B.
Users can access individual bytes in an arbitrary manner and we
denote this ‘‘real user access pattern’’ as M. Because of chunking,
the real access pattern has to be translated into coarser granularity

chunk access pattern, fromM to fM as in Fig. 1. This distorts the pop-
ularity distribution of the bytes since unpopular bytes could be in the
same chunk as popular bytes (e.g., bytes 1 and 2 in the figure), thus
inflating their observed popularity. Due to this distortion, although
the original popularity distribution is p ¼ 2

3 ;0;
1
6 ;0;

1
6 ;0

� �
, the trans-

lated popularity distribution becomes ~p ¼ 1
4 ;

1
4 ;

1
8 ;

1
8 ;

1
8 ;

1
8

� �
. We call

this distortion from the real p to the translated ~p chunking effect.
Chunking effect leads to the popularity d the instruction booklet

‘‘Pof the bytes in the same chunk to be equal which often also
means over- or under-estimation of popularity. Popularity esti-
mate has direct impact on caching performance:

1. Overestimated popularity increases the chance of caching
unpopular content.

2. Underestimated popularity decreases the chance of caching
popular content.

Both cases lead to a failure to use cache efficiently because of
wasting cache space on unpopular content.

The effect can happen anywhere in the network: at the client, at
the server, or at a router whenever the chunk size is bigger than the
smallest unit. Nonetheless, the effect is the same since the bytes in
the same chunk will be given the same popularity and we lose the
information from the real sequence. Vanichpun et al. [8] show that
for most demand-driven caching algorithms (e.g., LRU, LFU), it is
reasonable to assume that the closer ~p is to p, the better caching
decision a caching algorithm can make, therefore achieve higher
caching performance.

3.2. Popularity distribution distance: quantifying the benefits

Multiple metrics could be used to measure information loss due
to the chunking effect. However, simple difference of two distribu-
tions has very direct connection to the performance.

Vanichpun et al. [8] show that probability of an object being
cached is a function of its translated probability. Let

C : FðfM;CÞ ! x be a caching algorithm which maps a translated

request pattern fM and cache capacity C to a caching decision vec-
tor x ¼ fx1; x2; x3 . . .g, where xi specifies the probability that item f i

should be kept in the cache. Let I denote the set of the whole con-
tent items with N elements and IC the items cached by C. Assuming
unit size items, the total size of the items in the cache sums to the

cache capacity:
PN

i¼1xi ¼ C. Let us introduce v ¼ fx1
C ; . . . ; xi

C ; . . . ; xN
C g,

which is simply normalized version of x.
The performance of C can be evaluated by its (byte) hit rate H

which is simply the joint probability of an incoming request being
for a specific content f i and this item f i being stored in the cache.
We calculate H as follows:

Real Pattern M = { 1, 3, 1, 5, 1, 1 }

Translated M̃ = { A, B, A, B, A, A }

Translated M̃ = { [1, 2], [3, 4, 5, 6], [1, 2], [3, 4, 5, 6], [1, 2], [1, 2] }

1 2 3 4 5 6A B

p̃ = { 1
4 , 1

4 , 1
8 , 1

8 , 1
8 , 1

8}

p = {2
3
, 0,

1
6
, 0,

1
6
, 0}

{↓, ↑, ↓, ↑, ↓, ↑}Distortion

Fig. 1. Illustration of chunking effect for a chunking scheme with two chunks A
and B.1 We use node, router, and cache interchangeably.

L. Wang et al. / Computer Communications 61 (2015) 48–57 49

Download English Version:

https://daneshyari.com/en/article/445868

Download Persian Version:

https://daneshyari.com/article/445868

Daneshyari.com

https://daneshyari.com/en/article/445868
https://daneshyari.com/article/445868
https://daneshyari.com

