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The integration of satellite image data with forest inventory plot data is a popular approach for mapping forest
vegetation over large regions. Several methodological choices regarding spatial scale, mostly related to spatial
resolution or grain, can profoundly influence forest maps developed from plot and imagery data. Yet often the
consequences of scaling choices are not explicitly addressed. Our objective was to quantify the effects of several
scale-related methods on map accuracy for multiple forest attributes, using a variety of diagnostics that address
different map characteristics, to help guide map developers and users. We conducted nearest-neighbor imputa-
tion over a large region in the Pacific Northwest, USA, to investigate effects of imputation grain (single pixel or
kernel); inclusion of heterogeneous plots; accuracy assessment grain and extent; and value of k (k = 1 and
k = 5), where k is the number of nearest-neighbor plots. Spatial predictors were from rasters describing climate
and topography and a time-series of Landsat imagery. Reference data were from regional forest inventory plots
measured over two decades. All analyseswere conducted at a spatial resolution of 30 m × 30 m. Effects of impu-
tation grain and heterogeneous plots on map accuracy were small. Excluding heterogeneous plots slightly im-
proved map accuracy and did not lessen the systematic agreement (ACSYS) between our maps and observed
plot data. Accuracy assessment grain strongly influenced map accuracy: maps assessed with a multi-pixel
block were much more accurate than when assessed with a single pixel for almost all map diagnostics, but this
was an artifact of methods rather than reflecting real differences among maps. Unsystematic agreement
(ACUNS) between our maps and plots, or random error, improved notably with increasing accuracy assessment
extent for all scalingmethods, indicating that reliability ofmostmap applications can be improved through coars-
ening the map grain. Value of k strongly influenced map diagnostics. The k = 5 maps were better than k = 1
maps for local-scale accuracy, but at the cost of reduced ACSYS, and loss of variability and poor areal representa-
tion of forest conditions over the study region. The k = 1maps produced notably better predictions of the least
abundant forest conditions (early-successional, late-successional, and broadleaf). None of the scaling methods
were optimal for all map diagnostics. Nevertheless, given a variety of diagnostics associated with a range of
scaling options, map developers and map users can make informed choices about methods and resulting maps
that best meet their particular objectives, and we present some general guidelines in this regard. Most of our
findings are applicable to mapping with Landsat data in other forested regions with similar forest inventory
data, and to other methods for spatial prediction.

Published by Elsevier Inc.

1. Introduction

Applications of remote sensing to problems in ecology and in land
and environmental management have grown exponentially in recent
years. In particular, remotely sensed data acquired by the Landsat sensors
have played a key role in ecological applications (Cohen & Goward,
2004), vegetationmapping (Xie, Sha, & Yu, 2008), and broad-scale forest
inventory (McRoberts, Tomppo, & Næsset, 2010; Tomppo et al., 2008).
Landsat imagery offers moderate spatial resolution, a long history, and a
data archive that is accessible at no cost (Woodcock et al., 2008). These

factors provide unique opportunities to extend applications of Landsat
time-series to monitoring of forest change (Kennedy, Yang, & Cohen,
2010; Kennedy et al., 2012; Ohmann et al., 2012).

Despite its acknowledged utility, remotely sensed data cannot
completely replace ground sample data formany applications. The infor-
mation needs for broad-scale land cover data have expanded to include
biodiversity, dead wood, species composition, and other attributes that
cannot yet be reliably sensed remotely. Consequently, the integration
of satellite imagery with regional or national forest inventory plot data
has become a popular approach for estimation and spatial prediction of
forest attributes over large geographic regions (McRoberts et al., 2010;
Tomppo et al., 2008). Many countries in the world now use sample-
based approaches for national forest inventories, and remote sensing is
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often used to enhance sampling and estimation through stratified,
model-assisted, or model-based estimation (McRoberts et al., 2010).
Many applications in ecology and ecosystem science also have combined
remotely sensed and plot data for model-based spatial prediction over
large landscapes.

With any spatial modeling, mapping, or estimation approach, the
use of field plot data as training data or for model validation requires
geographical co-registration of plot locations within imagery, so
that paired values can be obtained from the two datasets. This co-
registration raises a host of methodological issues having to do
with scale, particularly spatial resolution (grain). Yet often the conse-
quences of scaling choices, which interact with the spatial heterogeneity
of the vegetationbeingmapped, are not addressed explicitly by the inves-
tigators (but see Arponen, Lehtomaki, Leppanen, Tomppo, & Moilanen,
2012; Fassnacht, Cohen, & Spies, 2006; McRoberts, 2010; Stehman &
Wickham, 2011). A review by Lechner, Langford, Bekessy, and Jones
(2012) reports that sources of uncertainty in mapping analyses –

including several scale-dependent factors – were rarely addressed in
landscape ecology studies that used spatial data.

Our study objective was to quantify the effects of several scale-
related methods on estimates of map accuracy for multiple forest attri-
butes.We define accuracy based on a variety of diagnostics that address
differentmap characteristics. Although ourmethod for vegetationmap-
ping in this study was nearest-neighbor imputation (Eskelson et al.,
2009), most of the scale issues we addressed apply more broadly to
other methods for predictive vegetation mapping that rely on integrat-
ing plot and geospatial data. Our overall approach was to develop mul-
tiple versions of forest vegetation maps, using different combinations
of scaling options, and then compare the results for a variety of map
diagnostics. Implicit to our analysis is the concept that regional, multi-
attribute forest maps serve a wide range of user needs, that there are
trade-offs among differentmapping approaches, and that no single spa-
tial unit (e.g. pixels, blocks of pixels, polygons) is universally best for
mapping or for accuracy assessment (Stehman & Wickham, 2011). We
also recognize that relativemodel performancewill vary to somedegree
among forest attributes, for different diagnostics, and among different
ecosystems. Nevertheless, we draw some general conclusions from
ourfindings that can informboth developers and users of regional forest
maps developed from regional inventory plots and satellite imagery.

Nearest-neighbor techniques have emergedwithin the international
forestry community as useful methods for predicting forest attributes
as combinations of the k observations (i.e. field plots) that have similar
characteristics in a space of ancillary variables (McRoberts, 2012;
McRoberts et al., 2010; Tomppo et al., 2008). Nearest-neighbor
methods are appealing because they aremultivariate andnonparametric
(require no assumptions about the distributions of response or predictor
variables), and can be used to map multiple forest characteristics over
large areas (Eskelson et al., 2009; McRoberts, 2012). Nearest-neighbor
techniques based on forest inventory plots and satellite imagery were
first implemented operationally in Finland in 1990, but have now been
applied in locations spanning the globe (McRoberts et al., 2010).

Gradient nearest neighbor (GNN) is one variation of nearest-
neighbor imputation that relies on constrained ordination (direct
gradient analysis) for weighting distances in nearest-neighbor calcula-
tions (Ohmann & Gregory, 2002) (see Section 2.1). In past studies we
have used GNN to map forest vegetation for a single point-in-time,
for a variety of forest ecosystems and objectives (Ohmann, Gregory,
Henderson, & Roberts, 2011; Ohmann, Gregory, & Spies, 2007; Pierce,
Ohmann, Wimberly, Gregory, & Fried, 2009). We recently extended
GNN to mapping multiple forest attributes at two dates based on two
dates of Landsat imagery (Ohmann et al., 2012). For the current effort,
conducted as part of a larger study to integrate data from Landsat
time-series and regional inventory plots in an observation-based sys-
tem for biomass and carbon monitoring in wooded ecosystems, we
more fully utilized the Landsat time-series data to map a yearly time-
series. Although we use multi-temporal plot and imagery data in our

analyses, this is not a primary emphasis of this paper, and our methods
and findings are equally applicable to single-date data. In addition,
although we assessed the scaling effects empirically for the Oregon
and California Cascades in the northwestern USA (Fig. 1), this region en-
compasses awide range of physical environments and forest vegetation
and our results should be generalizable to other locations.

We considered several aspects of spatial scale, which are described
in more detail below: the imputation grain (the scale of the mapping
unit used for nearest-neighbor distance calculations); the vegetation
heterogeneity within plots used inmodeling (which interacts with spa-
tial grain); the accuracy assessment grain (single pixel or multi-pixel
block); the spatial extent of accuracy assessment (from plot to larger
hexagons); and the value of k, which refers to the number of nearest-
neighbor plots used in calculating the forest attribute value that is
imputed to a map unit. The effect of k is unique to nearest-neighbor
imputation. Because we used Landsat satellite imagery, all analyses
were conducted using raster data at a spatial resolution of 30 m × 30 m
(referred to as 30-m).

2. Methods

2.1. GNN process for gradient modeling and spatial prediction

We developed a time-series of GNN maps for each combination of
scaling options (imputation grain, within-plot heterogeneity, accuracy
assessment grain and extent, and value of k). GNN was implemented
as described in Ohmann and Gregory (2002) and Ohmann et al.
(2011, 2012), but with the addition of kernel imputation, k = 5,
and enhancements formulti-date (yearly)mapping. Neighbor selection
in GNN is based on weighted Euclidean distance within multivariate
gradient space as determined from canonical correspondence analysis
(CCA) (ter Braak, 1986), a method of constrained ordination (direct
gradient analysis).

Spatial predictors (explanatory variables, often referred to collec-
tively as feature space) are listed in Table 1. Spectral variables were de-
rived from Landsat imagery mosaics developed with the LandTrendr
(Landsat Detection of Trends in Disturbance and Recovery) algorithms
(Kennedy, Cohen, & Schroeder, 2007; Kennedy et al., 2010). LandTrendr
is a trajectory-based change detection method that simultaneously ex-
amines a time-series of yearly Landsat TMsatellite images. Using images

Fig. 1. The Oregon and California Cascades modeling region, shown in darker gray.
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